
J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Distributed Scrum: Agile Project Management with Outsourced Development

Teams

 Jeff Sutherland, Ph.D. Anton Viktorov Jack Blount Nikolai Puntikov
 Patientkeeper StarSoft Dev. Labs SirsiDynix StarSoft Dev. Labs
 Newton, MA, US St. Petersburg, Russia Provo, UT, USA St. Petersburg, Russia

jeff.sutherland@computer.org anton.viktorov@starsoftlabs.com jack@dynix.com nick@starsoftlabs.com

Abstract

Agile project management with Scrum derives from
best business practices in companies like Fuji-Xerox,
Honda, Canon, and Toyota. Toyota routinely achieves
four times the productivity and 12 times the quality of
competitors. Can Scrum do the same for globally
distributed teams? Two Agile companies, SirsiDynix and
StarSoft Development Laboratories achieved comparable
performance developing a Java application with over
1,000,000 lines of code. During 2005, a distributed team
of 56 Scrum developers working from Provo, Utah;
Waterloo, Canada; and St. Petersburg, Russia, delivered
671,688 lines of production Java code. At 15.3 function
points per developer/month, this is the most productive
Java project ever documented. SirsiDynix best practices
are similar to those observed on distributed Scrum teams
at IDX Systems, radically different than those promoted
by PMBOK, and counterintuitive to practices advocated
by the Scrum Alliance. This paper analyzes and
recommends best practices for globally distributed Agile
teams.

1. Introduction

Scrum is an Agile software development process
designed to add energy, focus, clarity, and transparency to

project teams developing software systems. It leverages
artificial life research [1] by allowing teams to operate
close to the edge of chaos to foster rapid system evolution.
It capitalizes on robot subsumption architectures [2] by
enforcing a simple set of rules that allows rapid self-
organization of software teams to produce systems with
evolving architectures. A properly implemented Scrum was
designed to increase speed of development, align individual
and organization objectives, create a culture driven by
performance, support shareholder value creation, achieve
stable and consistent communication of performance at all
levels, and enhance individual development and quality of
life.

Scrum for software development teams began at Easel
Corporation in 1993 and was used to build the first object-
oriented design and analysis (OOAD) tool that
incorporated round-trip engineering. In a Smalltalk
development environment, code was auto-generated from a
graphic design tool and changes to the code from the
Smalltalk integrated development environment (IDE) were
immediately reflected back into design.

A development process was needed to support
enterprise teams where visualization of design immediately
generated working code. This led to an extensive review of
the computer science literature and dialogue with leaders of
hundreds of software development projects. Key factors
that influenced the introduction of Scrum at Easel

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Corporation were fundamental problems inherent in
software development

• Uncertainty is inherent and inevitable in
software development processes and products -
Ziv’s Uncertainty Principle [3]

• For a new software system the requirements will
not be completely known until after the users
have used it - Humphrey’s Requirements
Uncertainty Principle [4]

• It is not possible to completely specify an
interactive system – Wegner’s Lemma [5]

• Ambiguous and changing requirements,
combined with evolving tools and technologies
make implementation strategies unpredictable.

“All-at-Once” models of software development
uniquely fit object-oriented implementation of software
and help resolve these challenges. They assume the
creation of software involves simultaneously work on
requirements, analysis, design, coding, and testing, then
delivering the entire system all at once [6].

1.1. “All-at-Once” Development Models

The simplest “All-at-Once” model is a single super-
programmer creating and delivering an application from
beginning to end. This can be the fastest way to deliver a
product that has good internal architectural consistency
and is the “hacker” model of implementation. For
example, in a “skunk works” project prior to the first
Scrum, a single individual surrounded by a support team
spent two years writing every line of code for the Matisse
object database [7] used to drive $10B nuclear
reprocessing plants worldwide. At less than 50,000 lines
of code, the nuclear engineers said it was the fastest and
most reliable database ever benchmarked for nuclear
plants.

IBM documented a variant of this approach called
the Surgical Team and considered it the most productive
approach to software development [8]. The Surgical
Team concept has a fatal flaw in that there are at most one
or two individuals even in a large company that can
execute this model. For example, it took three years for a
competent team of developers to understand the
conceptual elegance of the Matisse object server well
enough to maintain it. The single-programmer model does
not scale well to large projects.

The next level of “All-at-Once” development is
handcuffing two programmers together. Pair
programming, an eXtreme Programming practice [9], is
an implementation of this. Here, two developers working
at the same terminal deliver a component of the system
together. This has been shown to deliver better code
(usability, maintainability, flexibility, extendibility) faster
than two developers working individually [10]. The

challenge is to achieve a similar productivity effect with
more than two people.

Scrum, a scalable, team-based “All-at-Once” model,
was motivated by the Japanese approach to team-based
new product development combined with simple rules to
enhance team self-organization (see Brooks’ subsumption
architecture [2]). At Easel, the development team was
already using an iterative and incremental approach to
building software [11]. Features were implemented in
slices where an entire piece of fully integrated functionality
worked at the end of an iteration. What intrigued us was
Takeuchi and Nonaka’s description of the team-building
process for setting up and managing a Scrum [12]. The idea
of building a self-empowered team in which a daily global
view of the product caused the team to self-organize
seemed like the right idea. This approach to managing the
team, which had been so successful at Honda, Canon, and
Fujitsu, also resonated with research on systems thinking
by Professor Senge at MIT [13].

1.2. Hyperproductivity in Scrum

Scrum was designed to allow average developers to self-
organize into high performance teams. The first Scrum
achieved a hyperproductive state in 1993-1994 because of
three primary factors. The first was the Scrum process
itself, characterized by 15 minute daily meetings where
each person answers three questions – what did you
accomplish yesterday, what will you do today, and what
impediments are getting in your way? This is now part of
the standard Scrum organizational pattern [14]. Second, the
team implemented all XP engineering processes [9]
including pair programming, continuous builds, and
aggressive refactoring. And third, the team systematically
stimulated rapid evolution of the software system.

One of the most interesting complexity phenomena
observed in the first Scrum was a “punctuated
equilibrium” effect [15]. This phenomenon occurs in
biological evolution when a species is stable for long
periods of time and then undergoes a sudden jump in
capability. Danny Hillis simulated this effect on an early
super-computer, the Connection Machine [16].

“The artificial organisms in Hillis’s particular world
evolved not by steady progress of hill climbing but by the
sudden leaps of punctuated equilibrium… With artificial
organisms Hillis had the power to examine and analyze the
genotype as easily as the realized phenotypes… While the
population seemed to be resting during the periods of
equilibrium … the underlying genetic makeup was actively
evolving. The sudden increase in fitness was no more an
instant occurrence than the appearance of a newborn
indicates something springing out of nothing; the
population seemed to be gestating its next jump.
Specifically, the gene pool of the population contained a set
of epistatic genes that could not be expressed unless all

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

were present; otherwise the alleles for these genes would
be recessive.” [17]

Using Scrum with a fully integrated component
design environment leads to unexpected, rapid evolution
of a software system with emergent, adaptive properties
resembling the process of punctuated equilibrium. Sudden
leaps in functionality resulted in earlier than expected
delivery of software in the first Scrum. Development
tasks, originally planned to take days, could often be
accomplished in hours using someone else’s code as a
starting point.

This aspect of self-organization is now understood as
a type of Set-Based Concurrent Engineering (SBCE)
practiced at Toyota [18]. Developers consider sets of
possible solutions and gradually narrow the set of
possibilities to converge on a final solution. Decisions on
how and where to implement a feature is delayed until the
last possible moment. The most evolved component is
selected “just in time” to absorb new functionality,
resulting in minimal coding and a more elegant
architecture. Thus emergent architecture, a core principle
in all Agile processes, is not random evolution. Properly
implemented, it is an SBCE technique viewed as a best
business practice in some of the world’s leading
corporations.

2. The SirsiDynix Distributed Scrum

Scrum was designed to achieve a hyperproductive state
where productivity increases by an order of magnitude
over industry averages. Many small, collocated teams
have achieved this effect. The question for this paper is
whether a large, distributed, outsourced team can achieve
the hyperproductive state.

U.S., European, or Japanese companies often
outsource software development to Eastern Europe,
Russia, or the Far East. Typically, remote teams operate
independently and communication problems limit
productivity. While there is a large amount of published
research on project management, distributed
development, and outsourcing strategies as isolated
domains, there are few detailed studies of best project
management practices on large systems that are both
distributed and outsourced.

Current recommended Scrum practice is for local
Scrum teams at all sites to synchronize once a day via a
Scrum of Scrums meeting. Here we describe something
rarely seen. At SirsiDynix, all Scrum teams consist of
developers from multiple sites. While some Agile
companies have created geographically transparency on a
small scale, SirsiDynix uses fully integrated Scrum teams
with over 50 developers in the U.S., Canada, and Russia.
This strategy helped build a new implementation of
platform and system architecture for a complex Integrated
Library System (ILS). The ILS system is similar to a

vertical market ERP system with a public portal interface
used by more than 200 million people.

Best practices for distributed Scrum seen on this
project consist of (1) daily Scrum team meetings of all
developers from multiple sites, (2) daily meetings of
Product Owner team (3) hourly automated builds from one
central repository, (4) no distinction between developers at
different sites on the same team, (5) and seamless
integration of XP practices like pair programming with
Scrum. While similar practices have been implemented on
small distributed Scrum teams [19] this is the first
documented project that demonstrates Scrum
hyperproductivity for large distributed/outsourced teams
building complex enterprise systems.

3. Distributed Team Models

Here we consider three distributed Scrum models
commonly observed in practice.

Isolated Scrums - Teams are isolated across
geographies. In most cases off-shore teams are not cross-
functional and may not be using the Scrum process.

Distributed Scrum of Scrums – Scrum teams are
isolated across geographies and integrated by a Scrum of
Scrums that meets regularly across geographies.

Totally Integrated Scrums – Scrum teams are cross-
functional with members distributed across geographies. In
the SirsiDynix case, the Scrum of Scrums was localized
with all ScrumMasters in Utah.

Most outsourced development efforts use a
degenerative form of the Isolated Scrums model where
outsourced teams are not cross-functional and not Agile.
Requirements may be created in the U.S. and developed in
Dubai, or development may occur in Germany and quality
assurance in India. Typically, cross-cultural
communication problems are compounded by differences
in work style in the primary organization vs. the outsourced
group. In the worst case, outsourced teams are not using
Scrum and their productivity is typical of waterfall projects
further delayed by cross-continent communications lag
time. Implementations of Scrum in a data rich CMMI Level
5 company simultaneously running waterfall, incremental,
and iterative projects, showed productivity of Scrum teams
was at least double that of waterfall teams, even with
CMMI Level 5 reporting overhead [20]. Outsourced teams
not using Scrum will typically achieve less than half the
velocity of a primary site using Scrum.

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Figure 1: Strategies for distributed Scrum teams [21].

The latest thinking in the Project Management
Institute Guide to the Project Management Body of
Knowledge (PMBOK) models is a degenerative case of
isolated non-Scrum teams [22]. This is a spiral waterfall
methodology which layers the Unified Modeling
Language (UML) and the Rational Unified Process
(RUP) onto teams which are not cross-functional [23]. It
partitions work across teams, creates teams with silos of
expertise, and incorporates a phased approach laden with
artifacts that violate the principles of lean development
[24].

Best practice recommended by the Scrum Alliance is
a Distributed Scrum of Scrums model. This model
partitions work across cross-functional, isolated Scrum
teams while eliminating most dependencies between
teams. Scrum teams are linked by a Scrum-of-Scrums
where ScrumMasters (team leaders/project managers)
meet regularly across locations. This encourages
communication, cooperation, and cross-fertilization and is
appropriate for newcomers to Agile development.

An Integrated Scrums model has all teams fully
distributed and each team has members at multiple
locations. While this appears to create communication
and coordination burdens, the daily Scrum meetings help
to break down cultural barriers and disparities in work
styles. On large enterprise implementations, it can
organize the project into a single whole with an integrated
global code base. Proper implementation of this approach
provides location transparency and performance
characteristics similar to small co-located teams. A
smaller, but similar, distributed team at IDX Systems
Corporation during 1996-2000 achieved almost ten times
industry average performance [19]. The SirsiDynix model
approached this level of performance for
distributed/outsourced Integrated Scrums. It appears to be
the most productive distributed team ever documented for
a large Java enterprise system with more than one million
lines of code. This Integrated Scrums model is
recommended for experienced Agile teams at multiple
locations.

4. SirsiDynix Case Study

SirsiDynix has approximately 4,000 library and consortia
clients, serving over 200 million people through over
20,000 library outlets in the Americas, Europe, Africa, the
Middle East and Asia-Pacific. Jack Blount, President and
CEO of Dynix and now CTO of the merged SirsiDynix
company, negotiated an outsource agreement with StarSoft
who staffed the project with over 20 qualified engineers in
60 days. Significant development milestones were
completed in a few weeks and joint development projects
are efficiently tracked and continue to be on schedule.

StarSoft Development Labs, Inc. is a software
outsourcing service provider in Russia and Eastern Europe.
Headquartered in Cambridge, Massachusetts, USA,
StarSoft operates development centers in St. Petersburg,
Russia and Dnepropetrovsk, Ukraine, employing over 450
professionals. StarSoft has experience handling
development efforts varying in size and duration from just
several engineers working for a few months to large-scale
projects involving dozens of developers and spanning
several years. StarSoft successfully uses Agile
development and particularly XP engineering practices to
maintain CMM Level 3 certification.

5. Hidden Costs of Outsourcing

The hidden costs of outsourcing are significant, beginning
with startup costs. Barthelemy [25] surveyed 50 companies
and found that 14% of outsourcing operations were
failures. In the remainder, costs of transitioning to a new
vendor often canceled out anticipated savings from low
labor costs. The average time from evaluating outsourcing
to beginning of vendor performance was 18 months for
small projects. As a result, the MIT Sloan Management
Review advises readers not to outsource critical IT
functions.

The German Institute for Economic Research analyzed
43,000 German manufacturing firms from 1992-2000 and
found that outsourcing services led to poor corporate
performance, while outsourcing production helped [26].
While this is a manufacturing study rather than software
development, it suggests that outsourcing core
development may provide gains not seen otherwise.

Isolated Scrums Teams

Distributed Scrum of Scrums

Integrated Scrums

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Figure 2 - SirsiDynix lines of new Java code in

thousands from 2003-2006.

Large software projects are very high risk. The 2003
Standish Chaos Report show success rates of only 34%.
51% of projects are over budget or lacking critical
functionality. 15% are total failures [27].

SirsiDynix sidestepped many of the hidden costs,
directly outsourced primary production, and used
Integrated Scrums to control risk. The goals of increasing
output per team member and linearly increasing overall
output by increasing team size were achieved. Production
velocity more than doubled when the 30 person North
American development team was augmented with 26
Russians from StarSoft in December 2005.

6. Intent of the Integrated Scrums Model

An Agile company building a large product and facing
time-to-market pressure needs to quickly double or
quadruple productivity within a constrained budget. The
local talent pool is not sufficient to expand team size and
salary costs are much higher than outsourced teams. On
the other hand, outsourcing is only a solution if Agile
practices are enhanced by capabilities of the outsourced
teams. The primary driver is enhanced technical
capability resulting in dramatically improved throughput
of new application functionality. Cost savings are a
secondary driver.

7. Context

Software complexity and demands for increased
functionality are exponentially increasing in all industries.
When an author of this paper flew F-4 aircraft in combat

in 1967, 8% of pilot functions were supported by software.
In 1982, the F16 software support was 45%, and by 2000,
the F22 augmented 80% of pilot capabilities with software
[22]. Demands for ease of use, scalability, reliability, and
maintainability increase with complexity.

SirsiDynix was confronted with the requirement to
completely re-implement a legacy library system with over
12,500 installed sites. Large teams working over many
years in a changing business environment faced many new
requirements in the middle of the project. To complicate
matters further, the library software industry was in a
consolidating phase. Dynix started the project in 2002 and
merged with Sirsi in 2005 to form SirsiDynix.

Fortunately, Dynix started with a scalable Agile
process that could adapt to changing requirements
throughout the project. Time to market demanded more
than doubling of output. That could only happen by
augmenting resources with Agile teams. StarSoft was
selected because of their history of successful XP
implementations and their experience with systems level
software.

The combination of high risk, large scale, changing
market requirements, merger and acquisition business
factors, and the SirsiDynix experience with Scrum
combined with StarSoft success with XP led them to
choose an Integrated Scrums implementation. Jack Blount's
past experience with Agile development projects at US
Data Authority, TeleComputing and JD Edwards where he
had used Isolated Scrums and Distributed Scrum of Scrums
models did not meet his expectations. This was a key factor
in his decision to structure the project as Integrated Scrums.

8. Forces

8.1. Complexity Drivers

The Systems and Software Consortium (SSCI) has outlined
drivers, constraints, and enablers that force organizations to
invest in real-time project management information
systems. Scalable Scrum implementations with minimal
tooling are one of the best real-time information generators
in the software industry.

SSCI complexity drivers are described as [22]:
• Increasing problem complexity shifting focus from

requirements to objective capabilities that must be met
by larger teams and strategic partnerships.

• Increasing solution complexity which shifts attention
from platform architectures to enterprise architectures
and fully integrated systems.

• Increasing technical complexity from integrating stand
alone systems to integrating across layers and stacks of
communications and network architectures.

• Increasing compliance complexity shifting from
proprietary to open standards.

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

• Increasing team complexity shifting from a single
implementer to strategic teaming and mergers and
acquisitions.
SirsiDynix faced all of these issues. Legacy products

were difficult to sell to new customers. They needed a
new product with complete functionality for the library
enterprise based on new technologies that were highly
scalable, easily expandable, and used the latest computer
and library standards,

The SirsiDynix Horizon 8.0 architecture supports a
wide variety of users from publication acquisition to
cataloging, searching, reserving, circulating, or
integrating information from local and external resources.
The decision was made to use Java with J2EE, a modular
design, database independency, maximum use of free
platforms and tools, and wide support of MARC21,
UNIMARC, Z39.50 and other ILS standards.

The project uses a three-tier architecture and
Hibernate as a database abstraction layer. Oracle 10g, MS
SQL, and IBM DB2 support is provided. The JBoss 4
Application server is used with a Java GUI Client with
WebStart bootstrap. It is a cross-platform product
supporting MS Windows 2000, XP, 2003, Red Hat Linux,
and Sun Solaris. Built-in, multi-language support has on-
the-fly resource editing for ease of localization. Other key
technologies are JAAS, LDAP, SSL, Velocity, Xdoclet,
JAXB, JUnit, and Jython.

8.2. Top Issues in Distributed Development

The SSCI has carefully researched top issues in
distributed development [22], all of which had to be
handled by SirsiDynix and StarSoft.
• Strategic: Difficult leveraging available resources,

best practices are often deemed proprietary, are time
consuming and difficult to maintain.

• Project and process management: Difficulty
synchronizing work between distributed sites.

• Communication: Lack of effective communication
mechanisms.

• Cultural: Conflicting behaviors, processes, and
technologies.

• Technical: Incompatible data formats, schemas, and
standards.

• Security: Ensuring electronic transmission
confidentiality and privacy.
The unique way in which SirsiDynix and StarSoft

implemented an Integrated Scrums model carefully
addressed all of these issues.

9. Solution: Integrated Scrums

There are three roles in a Scrum: the Product Owner, the
ScrumMaster, and the Team. SirsiDynix used these roles
to solve the strategic distribution problem of building a

high velocity, real-time reporting organization with an open
source process that is easy to implement and low-overhead
to maintain.

For large programs, a Chief ScrumMaster to run a
Scrum of Scrums and a Chief Product Owner to centrally
manage a single consolidated and prioritized product
backlog is essential. SirsiDynix located the Scrum of
Scrums and the Product Owner teams in Utah.

9.1. Team Formation

The second major challenge for large projects is
process management, particularly synchronizing work
between sites. This was achieved by splitting teams across
sites and fine tuning daily Scrum meetings.

Figure 3 - Scrum teams split across sites. PO=Product
Owner, SM=ScrumMaster, TLd=Technical
Lead.

Teams at SirsiDynix were split across the functional
areas needed for an integrated library system. Half of a
Scrum team is typically in Provo, Utah, and the other half
in St. Petersburg. There are usually 3-5 people on the Utah
part of the team and 4 or more on the St. Petersburg portion
of the team. The Search and Reporting Teams are smaller.
There are smaller numbers of team members in Seattle,
Denver, St. Louis, and Waterloo, Canada.

9.2. Scrum Meetings

Teams meet across geographies at 7:45am Utah time which
is 17:45 St. Petersburg time. Teams found it necessary to
distribute answers to the three Scrum questions in writing
before the Scrum meeting. This shortens the time needed
for the join meeting teleconference and helps overcome any
language barriers. Each individual reports on what they did
since the last meeting, what they intend to do next, and
what impediments are blocking their progress.

SM
Dev
Dev
Dev

T Ld
Dev
Dev
Dev

Catalogue Serials Circulation Search Reporting

StarSoft
St. Petersburg,

SirsiDynix
Provo, Utah

PO PO PO

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Email exchange on the three questions before the
daily Scrum teleconference was used throughout the
project to enable phone meetings to proceed more
smoothly and efficiently. These daily team calls helped
the people in Russia and the U.S. learn to understand each
other. In contrast, most outsourced development projects
do not hold formal daily calls and the communication
bridge is never formed.

Figure 4 – Scrum Team meetings

Local sub-teams have an additional standup meeting
at the beginning of the day in St. Petersburg. Everyone
uses the same process and technologies and daily
meetings coordinate activities within the teams.

ScrumMasters are all in Provo, Utah or Waterloo,
Canada, and meet in a Scrum of Scrums every Monday
morning. Here work is coordinated across teams.
Architects are directly allocated to production Scrum
teams and all located in Utah. An Architecture group also
meets on Monday after the Scrum of Scrums meeting and
controls the direction of the project architecture through
the Scrum meetings. A Product Owner resident in Utah is
assigned to each Scrum team. A chief Product Owner
meets regularly with all Product Owners to assure
coordination of requirements.

SirsiDynix achieved strong central control of teams
across geographies by centrally locating ScrumMasters,
Product Owners, and Architects. This helped them get
consistent performance across distributed teams.

9.3. Sprints

Sprints are two weeks long on the SirsiDynix project.
There is a Sprint planning meeting similar to an XP
release planning meeting in which requirements from
User Stories are broken down into development tasks.
Most tasks require a lot of questions from the Product
Owners and some tasks take more time than initial
estimates.

The lag time for Utah Product Owner response to
questions on User Stories forces multitasking in St.
Petersburg and this is not an ideal situation. Sometimes

new tasks are discovered after querying Product Owners
during the Sprint about feature details.

Code is feature complete and demoed at the end of
each Sprint. Up until 2006, if it met the Product Owner’s
functional requirement, it was considered done, although
full testing was not completed. It was not deliverable code
until SirsiDynix strengthened its definition of “done” to
include all testing in 2006. Allowing work in progress to
cross Sprint boundaries introduces wait times and greater
risk into the project. It violates the lean principle of
reducing work in progress and increases rework.

9.4. Product Specifications

Requirements are in the form of User Stories used in many
Scrum and XP implementations. Some of them are lengthy
and detailed, others are not. A lot of questions result after
receiving the document in St. Petersburg which are
resolved by in daily Scrum meetings, instant messaging, or
email.

Story for Simple Renewals Use Case:
 Patron brings book or other item to staff to be renewed.

Patron John Smith checked out "The Da Vinci Code" the
last time he was in the library. Today he is back in the
library to pick up something else and brings "The Da Vinci
Code" with him. He hands it to the staff user and asks for it
to be renewed. The staff user simply scans the item barcode
at checkout, and the system treats it as a renewal since the
item is already checked out to John. This changes the loan
period (extends the due date) for the length of the renewal
loan. Item and patron circulation history are updated with
a new row showing the renewal date and new due date.
Counts display for the number of renewals used and
remaining. The item is returned to Patron John Smith.

Assumptions:
• Item being renewed is currently checked out to the

active patron
• No requests or reservations outstanding
• Item was not overdue
• Item does not have a problem status (lost, etc)
• No renew maximums have been reached
• No block/circulation maximums have been

reached
• Patron's subscriptions are active and not within

renewal period
• No renewal charges apply
• No recalls apply
• Renewal is from Check Out (not Check In)
• Staff User has renewal privileges

Verification (How to verify completion):
• Launch Check Out

7:45am Provo, Utah

St. Petersburg, Russia 17:45pm

 Local Team
Meeting

Scrum Team Meeting

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

• Retrieve a patron who has an item already
checked out but not yet overdue

• Enter barcode for checked out item into barcode
entry area (as if it is being checked out), and
press <cr>.

• System calculates new due date according to
circulation rules and agency parameters.

• The renewal count is incremented (Staff renewal
with item)

• If user views "Circulation Item Details", the
appropriate Renewals information should be
updated (renewals used/remaining)

• Cursor focus returns to barcode entry area, ready
to receive next scan (if previous barcode is still
displayed, it should be automatically replaced by
whatever is entered next)

• A check of the item and patron circulation
statistics screens show a new row for the renewal
with the renewal date/time and the new due date.

For this project, St. Petersburg staff likes a detailed
description because the system is a comprehensive and
complex system designed for specialized librarians. As a
result, there is a lot of knowledge that needs to be
embedded in the product specification.

The ways libraries work in St. Petersburg are very
different than English libraries. Russian libraries operate
largely via manual operations. While processes look
similar to English libraries on the surface, the underlying
details are quite different. Therefore, user stories do not
have sufficient detail for Russian programmers.

9.5. Testing

Developers write unit tests. The Test team and Product
Owners do manual testing. An Automation Test team in
Utah creates scripts for an automated testing tool. Stress
testing is as needed.

During the Sprint, the Product Owner tests features
that are in the Sprint backlog. Up until 2006, testers
received a stable Sprint build only after the Sprint demo.
The reason for this was a lower tester/developer ratio than
recommended by the Scrum Alliance.

There are 30 team members in North America and 26
team members in St. Petersburg on this project. The St.
Petersburg team has one project leader, 3 technical team
leaders, 18 developers, 1 test lead, and 3 testers. This low
tester/developer ratio initially mad it impossible to have a
fully tested package of code at the end of the Sprints.

The test-first approach was initially encouraged and
not mandated. Tests were written simultaneously with
code most of the time. GUIs were not unit tested.

Component
Test
Cases Tested

Acquisitions 529 384

Binding 802 646
Cataloging 3101 1115
Circulation 3570 1089
Common 0 0
ERM 0 0
Pac Searching 1056 167
Serials 2735 1714
Sub Total 11793 5115

Figure 5 – Test Cases Created vs. Tested

In the summer of 2006, a new CTO of SirsiDynix,
Talin Bingham, took over the project and introduced Test
Driven Design. Every Sprint starts with the usual Sprint
Planning meeting and teams are responsible for writing
functional tests before doing any coding. Once functional
tests are written and reviewed, coding starts. Test-first
coding is mandated. When coding is complete, developers
run unit tests and manually pass all the functional tests
before checking in changes to the repository.

Functional
Area

Reserve Book Room

Task
Description

Check that items from Item List is
placed under Reserve with “Inactive”
status

Condition 1. User has right for placing Items
under Reserve

2. At least one Item List exists in
the system

3. Default Reserve Item Status in
Session Defaults is set to
”Inactive”

Entry Point Launcher is opened
Test Data No specific data
Action 1. Reserve > Reserve Item

2. Select “Item Search” icon
3. Select “Item List” in the Combo

box list of search options and
enter appropriate Item list name

4. Press Enter
5. Select all Items which appear in

the Item Search combo box and
press “OK”

Expected
Results

1. Items that were in Item list
should appear in the list in
Reserve Item

2. Status of all items that has been
just added should be shown as
“Inactive”

3. Save button should be inactive
4. All corresponding Item should

retain their original parameters

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Figure 6 – Functional Test Example

Automation testing is done using the Compuware
TestPartner tool, but there is still room for improvement
of test coverage.

9.6. Configuration Management

SirsiDynix was using CVS as source code repository
when the decision was made to engage an outsourcing
firm. At that time, SirsiDynix made a decision that CVS
could not be used effectively because of lack of support
for distributed development, largely seen in long code
synchronization times. Other tools were evaluated and
Perforce was chosen as the best solution.

StarSoft had seen positive results on many projects
using Perforce. It is fast, reliable and offers local proxy
servers for distributed teams. Although not a cheap
solution, it has been very effective for the SirsiDynix
project.

Automated builds run every hour with email
generated back to developers. It takes 12 minutes to do a
build, 30 minutes if the database changes. StarSoft would
like to see faster builds and true concurrent engineering.
Right now builds are only stable every two weeks at
Sprint boundaries.

9.7. Pair Programming, Refactoring, and other
XP practices

StarSoft is an XP company and tries to introduce XP
practices into all their projects. Pair programming is done
on more complicated pieces of functionality. Refactoring
was planned for future Sprints and not done in every
iteration as in XP. Some radical refactoring without loss
of functionality occurred as the project approached
completion. Continuous integration is implemented as
hourly builds. On this project, these three engineering
practices were used with Scrum as the primary project
management methodology.

9.8. Measuring Progress

The project uses the Jira <http://www.atlassian.com>
issue tracking and project management software. This
gives everyone on the project a real-time view into the
state of Sprints. It also provides comprehensive
management reporting tools. The Figure below shows the
Sprint burn-down chart, a snapshot of Earned Business,
and a synopsis of bug status.

Figure 6 – SirsiDynix Horizon 8.0 Project Dashboard

Data from Jira can be downloaded into Excel to create
any requested data analysis. High velocity projects need an
automated tool to track status across teams and
geographies. The best tools support bug tracking and status
of development tasks in one system and avoid extra work
on data entry by developers. Such tools should track tasks
completed by developers and work remaining. They
provide more detailed and useful data than time sheets,
which should be avoided. Time sheets are extra overhead
that do not provide useful information on the state of the
project, and are de-motivating to developers.

Other companies like PatientKeeper [28] have found
tools that incorporate both development tasks and defects
that can be packaged into a Sprint Backlog are highly
useful for complex development projects. Thousands of
tasks and dozens of Sprints can be easily maintained and
reviewed real-time with the right tool.

10. Integrated Scrums Model Resulting
Context

Collaboration of SirsiDynix and StarSoft turned the
Horizon 8.0 project into one of the most productive Scrum
projects ever documented. For example, data is provide in
the table below on a project that was done initially with a
waterfall team and then re-implemented with a Scrum team
[29]. The waterfall team took 9 months with 60 people and
generated 54000 lines of code. It was re-implemented by a
Scrum team of 4.5 people in 12 months. The resulting
50,803 lines of code had more functionality and higher
quality.

SCRUM

Waterfall

SirsiDynix
Person
Months

54 540 827

Java LOC 50,803 54000 671,688

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

Function
Points

959 900 12673

FP per
dev/month

17.8 2.0 15.3

FP per
dev/month
(industry
average)

12.5 12.5 3

Figure 7 – Function Points/Developer Month for
collocated vs. distributed projects.

Capers Jones of Software Productivity Research has
published extensive tables on average number of function
points per lines of code for all major languages [30].
Since the average lines of code per function point for Java
is 53, we can estimate the number of function points in
the Scrum application. The waterfall implementation is
known to have fewer function points.

Distributed teams working on Horizon 8.0 generated
671,688 lines of code in 14.5 months with 56 people.
During this period they radically refactored the code on
two occasions and reduced the code based by 275,000.
They have not been penalized for refactoring as that is
rarely done in large waterfall projects in the database
from which Capers derived his numbers. They have also
not been rewarded for refactoring even though reducing
lines of code is viewed as important as adding new code
on well-run Agile projects.

Jones has also shown from his database of tens of
thousands of projects that industry average productivity is
12.5 function points per developer/month for a project of
900 function points and that this drops to 3 for a project
with 13000 function points [31]. Some of this is due to
4GL and other code-automation tools used on small
projects, many of which are not implemented in third
generation languages like Java.

The SirsiDynix project is almost as productive as the
small Scrum project with a collocated team of 4.5 people.
For a globally dispersed team, it is one of the most
productive projects ever documented at a run rate of five
times industry average.

11. Conclusion

This case study is a proof point for the argument that
distributed teams and even outsourced teams can be as
productive as a small collocated team. This requires
excellent implementation of Scrum along with good
engineering practices. The entire set of teams must
function as a single team with one global build repository,
one tracking and reporting tool, and daily meetings across
geographies.

Outsourced teams must be highly skilled Agile teams
and project implementation must enforce geographic

transparency with cross-functional teams at remote sites
fully integrated with cross-functional teams at the primary
site. In the SirsiDynix case, the teams were all run from a
central site giving strong central control.

It is highly unlikely that distributed outsourced teams
using current Agile Alliance best practices of distributing
work to independent Scrum teams across geographies
could achieve the level of performance achieved in this
case study. Therefore, SirsiDynix sets a new standard of
best practices for distributed and outsourced teams with a
previously demonstrated high level of Agile competence.

12. References

[1] C. G. Langton, "Life at the Edge of Chaos," in Artificial
Life II, SFI Studies in the Sciences of Complexity, Held
Feb 1990 in Sante Fe, NM, 1992, pp. 41-91.

[2] R. A. Brooks, "Intelligence without representation,"
Artificial Intelligence, vol. 47, pp. 139-159, 1991.

[3] H. Ziv and D. Richardson, "The Uncertainty Principle
in Software Engineering," in submitted to Proceedings
of the 19th International Conference on Software
Engineering (ICSE'97), 1997.

[4] W. S. Humphrey, A Discipline for Software
Engineering: Addison-Wesley, 1995.

[5] P. Wegner, "Why Interaction Is More Powerful Than
Algorithms," Communications of the ACM, vol. 40, pp.
80-91, May 1997.

[6] P. DeGrace and L. H. Stahl, Wicked problems,
righteous solutions : a catalogue of modern software
engineering paradigms. Englewood Cliffs, N.J.:
Yourdon Press, 1990.

[7] Matisse Software, "The Emergence of the Object-SQL
Database," Mountain View, CA 2003.

[8] F. P. Brooks, The Mythical Man Month: Essays on
Software Engineering: Addison-Wesley, 1995.

[9] K. Beck, Extreme Programming Explained: Embrace
Change. Boston: Addison-Wesley, 1999.

[10] W. A. Wood and W. L. Kleb, "Exploring XP for
Scientific Research," IEEE Software, vol. 20, pp. 30-36,
May/June 2003.

[11] C. Larman, Agile & Iterative Development: A
Manager's Guide. Boston: Addison-Wesley, 2004.

[12] H. Takeuchi and I. Nonaka, "The New New Product
Development Game," Harvard Business Review, 1986.

[13] P. M. Senge, The Fifth Discipline: the Art and Practice
of the Learning Organization. New York: Currency,
1990.

[14] M. Beedle, M. Devos, Y. Sharon, K. Schwaber, and J.
Sutherland, "Scrum: A Pattern Language for
Hyperproductive Software Development," in Pattern
Languages of Program Design. vol. 4, N. Harrison, Ed.
Boston: Addison-Wesley, 1999, pp. 637-651.

[15] S. J. Gould, The structure of evolutionary theory.
Cambridge, Mass.: Belknap Press of Harvard
University Press, 2002.

[16] W. D. Hillis, The Connection Machine. Cambridge,
MA: MIT Press, 1985.

J. Sutherland, A. Viktorov, J. Blount, and N. Puntikov, "Distributed Scrum: Agile Project Management with Outsourced Development Teams," in
HICSS'40, Hawaii International Conference on Software Systems, Big Island, Hawaii, 2007.

[17] S. Levy, Artificial Life : A Report from the Frontier
Where Computers Meet Biology, 1st ed. New York:
Vintage, Reprint edition, 1993.

[18] D. K. I. Sobek, A. C. Ward, and J. K. Liker, "Toyota's
Principles of Set-Based Concurrent Engineering,"
Sloan Management Review, vol. 40, pp. 67-83, 1999.

[19] J. Sutherland, "Agile Can Scale: Inventing and
Reinventing Scrum in Five Companies," Cutter IT
Journal, vol. 14, pp. 5-11, 2001.

[20] C. Jakobson, "The Magic Potion for Code Warriors!
Maintaining CMMI Level 5 Certification With
Scrum.," J. Sutherland, Ed. Aarhus, Denmark: Agile
2007 paper in preparation, 2006.

[21] H. Takeuchi and I. Nonaka, Hitotsubashi on
Knowledge Management. Singapore: John Wiley &
Sons (Asia), 2004.

[22] K. E. Nidiffer and D. Dolan, "Evolving Distributed
Project Management," IEEE Software, vol. 22, pp. 63-
72, Sep/Oct 2005.

[23] R. Zanoni and J. L. N. Audy, "Projected Management
Model for Physically Distributed Software
Development Environment," in HICSS'03, Hawaii,
2003, p. 294.

[24] M. Poppendieck, "A History of Lean: From
Manufacturing to Software Development," in JAOO
Conference, Aarhus, Denmark, 2005.

[25] J. Barthelemy, "The Hidden Costs of Outsourcing,"
MITSloan Management Review, vol. 42, pp. 60-69,
Spring 2001.

[26] B. Gorzig and A. Stephan, "Outsourcing and Firm-
level Performance," German Institute of Economic
Research October 2002.

[27] StandishGroup, "2003 Chaos Chronicles," The
Standish Group International, 2003.

[28] J. Sutherland, "Future of Scrum: Parallel Pipelining of
Sprints in Complex Projects with Details on Scrum
Type C Tools and Techniques," PatientKeeper, Inc.,
Brighton, MA May 30 2005.

[29] M. Cohn, User Stories Applied : For Agile Software
Development: Addison-Wesley, 2004.

[30] C. Jones, "Programming Languages Table, Release
8.2," Software Productivity Research, Burlington, MA
1996.

[31] C. Jones, Software assessments, benchmarks, and best
practices / Capers Jones. Boston, Mass.: Addison
Wesley, 2000.

