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Organizational Patterns: born 
out of a need for agility 
  The ISO 9000 world of 1990 telecom 

  Process heaven: linear shelf decimeters of process 
documentation: the “Online Methodology” (OLM) 

  “Highly compliant” organization… 
  … yet 80% of the work was being done under “documented 

waivers” 
  Employees outside earshot of ISO auditors would decry the OLM 

as a myth 
  Our conclusion: Process guidance didn’t work 

  Premise: roles are more stable than process, and needn’t change 
  Focusing on roles and responsibilities allows the right things to 

happen 



Patterns: Our Tool of Empiricism 
and Learning Processes 
  A solution to a problem in a context 
  Architectural patterns ideas first published by Alexander in 1977 
  Look at issues of system structure, not just parts 
  Build on proven practice, not just promising theories 
  Have a central notion of the fundamental process: 

  1. Find the weakest link 
  2. Fix it locally by adding local structure 
  3. If it is better, iterate. If not, undo it and try restructuring 

elsewhere 
  It’s how organizations learn 



More formally (for you academics) 

 A pattern language L defines a geometry S 
characterized by a semi-group G 

 A pattern            such that p: S → S 
 The language L constrains the order of 

composition pm   pn (can be formalized with a 
binary predicate on each function, reduces to I) 

 There exists a weak group invariant over G (G is a 
similarity group) 

 Each pattern p reduces the entropy of a problem 
vector space X 



What are Organizational 
Patterns? 

  Solutions to organizational problems in a context 
  First appeared in the Alexander + software context at PLoP in 

1994 (Coplien, Whitenack);  received with some skepticism 
  Now, a growing body of knowledge 

Or, a construct from anthropology, Kroeber:
Universal patterns:  transcend cultures
Systemic patterns:  have a common root in an ancient culture
Total culture patterns: give a culture its identity

Patterns define culture



Mining the Patterns: Work-life 
Role-Play 
  Identify project roles 
  Study subjects play roles 
  Development scenarios drive role-play 
  Capture interaction & coupling on CRC cards 
  Social Network Analysis Tools 

  Organization Structure Visualization 
  Organizational Metrics 

  Capture Trends as Generative Patterns 



CRC Cards:  Classes, Responsibilities, 
and Collaborators 

Subsystem coord. 

Validate MR lists 
Build products 
Administer ENVY  
Resolve deps. 

Subsystem coord. 
Change committee 
Designers 
System test 





Organization Metrics 

QPW 



Agility is about communication 

QPW 





DISTRIBUTE WORK EVENLY 
…an organization is working to organize in a way that makes the environment as enjoyable as possible and which makes the most effective use 
of human resources.  

* * * 
It is easy to depend on just a few people to carry most of the organization’s burdens.  Managers like this because it minimizes the number 
of interfaces they need to manage.  And some employees strive to do all they can out of a misplaced feeling of monumental responsibility. In 
fact, we find that PRODUCER ROLES tend to have stronger communication networks than other support roles. 

But if this unevenness continues, it is difficult for a heavily loaded role to sustain the communication networks necessary to healthy functioning 
of the enterprise as a whole. Resentment might build between employees who don’t feel like they are central to the action.  And the central 
people may easily burn out. 

Define the communication intensity ratio as the ratio of the number of communication paths of the busiest role to the average number of 
communication paths per role.   The organization has a problem if this ratio becomes too large. 

Therefore: Try to keep the communication intensity ratio to two or less. (We have found that it isn't easy to get much below two.) The 
easiest way to do it is to have FEW ROLES. It also helps to identify the PRODUCER ROLES and eliminate any deadbeat roles. You can also 
identify all the communication to the most central role and see which are really necessary. There may be ways to "brute-force“ eliminate some 

of the communication, after you have identified it.  





DISTRIBUTE WORK EVENLY 

QPW 



Patterns work together 

  Like words in a language combine into sentences, you can 
combine patterns into an organization 

  There are rules for putting patterns together 
  For example, TEAM PER TASK provides context for 

PROGRAMMING IN PAIRS 

  However, there are many legal ways to put them together 
  … because there are many kinds of organizations 

  Building the process itself should be agile 



Systems Thinking and Patterns 

  Where to attack the problem? 
  Processes: the ISO 9000 story: too superficial; comes 

from structure 
  Organizational structure: deeper, manageable; comes 

from values 
  Values: Relate to organizational identity; very difficult to 

elicit 

  How to attack the problem? 
  Local adaptation and piecemeal growth: impossible to 

master-plan 



Organizational patterns 
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The Top Ten Org Patterns 
  UNITY OF PURPOSE 
  ENGAGE CUSTOMERS 
  DOMAIN EXPERTISE IN ROLES 
  ARCHITECT CONTROLS PRODUCT 
  DISTRIBUTE WORK EVENLY 
  FUNCTION OWNER AND COMPONENT OWNER 

  MERCENARY ANALYST 
  ARCHITECT ALSO IMPLEMENTS 
  FIREWALLS 
  DEVELOPER CONTROLS PROCESS 



Scrum in general Few Roles, Producer Roles, 

Sprint 

Named Stable Bases, Take No Small Slips, 
Programming Episode, Work Queue, Informal 
Labor Plan, Developer Controls Process, 
Someone Always Makes Progress 

Daily Scrum, Release Planning Group Validation 
Customer Demo Engage Customers 
Sprint Backlog Someone Always Makes Progress 
Burn-down Chart Work Queue, Completion Headroom 
Stop-the-Line Recommitment Meeting, Take No Small Slips 
Roles Few Roles 
Product Owner Patron, Surrogate Customer 
ScrumMaster Firewalls 
The Team Self-Selecting Team, Producers in the Middle 
DONE Take no small slips, Named Stable Bases 
Multi-disciplinary Team Holistic Diversity 
Chickens and Pigs Firewalls, Producer Roles 

Scrum by the Org Patterns 



Scrum: Project Management 
Pattern Language 
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Scrum: Piecemeal Growth 
Pattern Language 
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Scrum: Organizational 
Construction Patterns 
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Scrum as Org Patterns 



Conclusion 

 Organizational Patterns capture Agile foundations 
 Grounding in a decade of empirical research 
 Be wary of trying Scrum before having 

“competencies” from the Org Patterns 
 Patterns are an incremental, low-risk path to Agile 

adoption 



Interesting On-Line Reading 
  Sutherland, Jeff. SCRUM: Another way to think about scaling a project. 11 March 

2003, on the web at Jeff Sutherland’s SCRUM Log. On how the Organizational 
Patterns work is the foundation of SCRUM. http://jeffsutherland.org/scrum/
2003_03_01_archive.html 

  Schwaber, Ken. Scaling Agile Processes. In the Agile Project Management E-Mail 
Advisor, 3 April 2003. QPW as an example of scaling Agile processes. http://
www.cutter.com/project/fulltext/advisor/2003/apm030403.html 

  Coplien, James. Borland Software Craftsmanship: A New Look at Process, Quality 
and Productivity. Proceedings of the 5th Annual Borland International Conference. 
http://users.rcn.com/jcoplien/Patterns/Process/QPW/borland.html 

  Harrison, Neil, and James Coplien. Patterns of Productive Software Organizations. 
Bell Labs Technical Journal 1(1), Summer 1996. http://users.rcn.com/jcoplien/
Patterns/paper11.pdf 

  Cain, Brendan, et al. Social Patterns in Productive Software Organizations. Annals 
of Software Engineering, December 1996. http://www.baltzer.nl/ansoft/articles/
2/ase004.pdf 
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