
Organizational
Patterns and Agility

James O. Coplien
Nordija A/S

SCRUM
Easel, 1993

A Bit of History

 Pasteur Project
(1990-3)

 Hillside: “Org
Patterns”

(aug. 1993)

XP
(1997?) Beck: Organizational

 patterns are one of the
three influences on XP

Sutherland:
 Dr. Dobb’s article
was the final key

Cockburn
Patterns
(1995-6)

Highsmith:
“Agile”

(feb. 2001)

Dr. Dobb;s
Article,

okt. 1994

PLoP1: Org
Patterns

(aug. 1994)

QPW Studie
maj 1993

 WYCASH Way,
Borland
1991-2

Agile
Manifesto
aug. 2001

 Takeuchi
The New New
Development
Game, 1986

Organizational Patterns: born
out of a need for agility
  The ISO 9000 world of 1990 telecom

  Process heaven: linear shelf decimeters of process
documentation: the “Online Methodology” (OLM)

  “Highly compliant” organization…
  … yet 80% of the work was being done under “documented

waivers”
  Employees outside earshot of ISO auditors would decry the OLM

as a myth
  Our conclusion: Process guidance didn’t work

  Premise: roles are more stable than process, and needn’t change
  Focusing on roles and responsibilities allows the right things to

happen

Patterns: Our Tool of Empiricism
and Learning Processes
  A solution to a problem in a context
  Architectural patterns ideas first published by Alexander in 1977
  Look at issues of system structure, not just parts
  Build on proven practice, not just promising theories
  Have a central notion of the fundamental process:

  1. Find the weakest link
  2. Fix it locally by adding local structure
  3. If it is better, iterate. If not, undo it and try restructuring

elsewhere
  It’s how organizations learn

More formally (for you academics)

 A pattern language L defines a geometry S
characterized by a semi-group G

 A pattern such that p: S → S
 The language L constrains the order of

composition pm pn (can be formalized with a
binary predicate on each function, reduces to I)

 There exists a weak group invariant over G (G is a
similarity group)

 Each pattern p reduces the entropy of a problem
vector space X

What are Organizational
Patterns?

  Solutions to organizational problems in a context
  First appeared in the Alexander + software context at PLoP in

1994 (Coplien, Whitenack); received with some skepticism
  Now, a growing body of knowledge

Or, a construct from anthropology, Kroeber:
Universal patterns: transcend cultures
Systemic patterns: have a common root in an ancient culture
Total culture patterns: give a culture its identity

Patterns define culture

Mining the Patterns: Work-life
Role-Play
  Identify project roles
  Study subjects play roles
  Development scenarios drive role-play
  Capture interaction & coupling on CRC cards
  Social Network Analysis Tools

  Organization Structure Visualization
  Organizational Metrics

  Capture Trends as Generative Patterns

CRC Cards: Classes, Responsibilities,
and Collaborators

Subsystem coord.

Validate MR lists
Build products
Administer ENVY
Resolve deps.

Subsystem coord.
Change committee
Designers
System test

Organization Metrics

QPW

Agility is about communication

QPW

DISTRIBUTE WORK EVENLY
…an organization is working to organize in a way that makes the environment as enjoyable as possible and which makes the most effective use
of human resources.

* * *
It is easy to depend on just a few people to carry most of the organization’s burdens. Managers like this because it minimizes the number
of interfaces they need to manage. And some employees strive to do all they can out of a misplaced feeling of monumental responsibility. In
fact, we find that PRODUCER ROLES tend to have stronger communication networks than other support roles.

But if this unevenness continues, it is difficult for a heavily loaded role to sustain the communication networks necessary to healthy functioning
of the enterprise as a whole. Resentment might build between employees who don’t feel like they are central to the action. And the central
people may easily burn out.

Define the communication intensity ratio as the ratio of the number of communication paths of the busiest role to the average number of
communication paths per role. The organization has a problem if this ratio becomes too large.

Therefore: Try to keep the communication intensity ratio to two or less. (We have found that it isn't easy to get much below two.) The
easiest way to do it is to have FEW ROLES. It also helps to identify the PRODUCER ROLES and eliminate any deadbeat roles. You can also
identify all the communication to the most central role and see which are really necessary. There may be ways to "brute-force“ eliminate some

of the communication, after you have identified it.

DISTRIBUTE WORK EVENLY

QPW

Patterns work together

  Like words in a language combine into sentences, you can
combine patterns into an organization

  There are rules for putting patterns together
  For example, TEAM PER TASK provides context for

PROGRAMMING IN PAIRS

  However, there are many legal ways to put them together
  … because there are many kinds of organizations

  Building the process itself should be agile

Systems Thinking and Patterns

  Where to attack the problem?
  Processes: the ISO 9000 story: too superficial; comes

from structure
  Organizational structure: deeper, manageable; comes

from values
  Values: Relate to organizational identity; very difficult to

elicit

  How to attack the problem?
  Local adaptation and piecemeal growth: impossible to

master-plan

Organizational patterns

Individuals and
Interactions

Customer
Contact Product Focus Embrace

Change
Agile Values

And Principles

Structure
(Patterns)

Function
Owner and
Component

Owner
Architect Also

Implements
Work Flows

Inward
Developer
Controls
Process

Processes Code
Inspection

Recommitment
Meeting Unit Test

The Top Ten Org Patterns
  UNITY OF PURPOSE
  ENGAGE CUSTOMERS
  DOMAIN EXPERTISE IN ROLES
  ARCHITECT CONTROLS PRODUCT
  DISTRIBUTE WORK EVENLY
  FUNCTION OWNER AND COMPONENT OWNER

  MERCENARY ANALYST
  ARCHITECT ALSO IMPLEMENTS
  FIREWALLS
  DEVELOPER CONTROLS PROCESS

Scrum in general Few Roles, Producer Roles,

Sprint

Named Stable Bases, Take No Small Slips,
Programming Episode, Work Queue, Informal
Labor Plan, Developer Controls Process,
Someone Always Makes Progress

Daily Scrum, Release Planning Group Validation
Customer Demo Engage Customers
Sprint Backlog Someone Always Makes Progress
Burn-down Chart Work Queue, Completion Headroom
Stop-the-Line Recommitment Meeting, Take No Small Slips
Roles Few Roles
Product Owner Patron, Surrogate Customer
ScrumMaster Firewalls
The Team Self-Selecting Team, Producers in the Middle
DONE Take no small slips, Named Stable Bases
Multi-disciplinary Team Holistic Diversity
Chickens and Pigs Firewalls, Producer Roles

Scrum by the Org Patterns

Scrum: Project Management
Pattern Language

COMMUNITY
OF TRUST

NAMED STABLE
BASES

SURROGATE
CUSTOMER

TAKE NO
SMALL SLIPS

COMPLETION
HEADROOM

RECOMMITMENT

MEETING

WORK
QUEUE

INFORMAL
LABOR PLAN

PROGRAMMING
EPISODE

DEVELOPER CON-
TROLS PROCESS

SOMEONE ALWAYS
MAKES PROGRESS

INTERRUPTS
UNJAM BLOCKING

FIREWALLS

Scrum: Piecemeal Growth
Pattern Language

COMMUNITY
OF TRUST

SIZE THE
ORGANIZATION

ENGAGE

CUSTOMERS

SURROGATE
CUSTOMER

SCENARIOS
DEFINE PROBLEM

FIREWALLS
SELF SELECTING

TEAM

UNITY OF
PURPOSE

TEAM
PRIDE

PATRON ROLE

HOLISTIC
DIVERSITY

ENGAGE
QUALITY

ASSURANCE

GROUP
VALIDATION

Scrum: Organizational
Construction Patterns

COMMUNITY
OF TRUST

FEW ROLES

PRODUCER
ROLES

PRODUCERS IN
THE MIDDLE

ORGANIZATION
FOLLOWS LOCATION

SHAPING CIRCULA-
TION REALMS

DISTRIBUTE
WORK EVENLY

RESPONSIBILITES
ENGAGE

MOVE
RESPONSIBILITIES

3 TO 7 HELPERS
PER ROLE

COUPLING
DECREASES LATENCY

NAMED STABLE
BASES TAKE NO

SMALL SLIPS COMPLETION
HEADROOM RECOMMITMENT

MEETING

WORK
QUEUE INFORMAL

LABOR PLAN

PROGRAMMING
EPISODE

DEVELOPER CON-
TROLS PROCESS

SOMEONE ALWAYS
MAKES PROGRESS

INTERRUPTS
UNJAM BLOCKING

SIZE THE
ORGANIZATION

ENGAGE
CUSTOMERS

SURROGATE
CUSTOMER

SCENARIOS
DEFINE PROBLEM

FIREWALLS

SELF SELECTING
TEAM

UNITY OF
PURPOSE

TEAM
PRIDE

PATRON ROLE

HOLISTIC
DIVERSITY

ENGAGE
QUALITY

ASSURANCE

GROUP
VALIDATION

COMMUNITY
OF TRUST

FEW ROLES
PRODUCER

ROLES

PRODUCERS IN
THE MIDDLE

ORGANIZATION
FOLLOWS LOCATION

SHAPING CIRCULA-
TION REALMS

DISTRIBUTE
WORK EVENLY

RESPONSIBILITES
ENGAGE

MOVE
RESPONSIBILITIES

3 TO 7 HELPERS
PER ROLE

COUPLING
DECREASES

LATENCY

Scrum as Org Patterns

Conclusion

 Organizational Patterns capture Agile foundations
 Grounding in a decade of empirical research
 Be wary of trying Scrum before having

“competencies” from the Org Patterns
 Patterns are an incremental, low-risk path to Agile

adoption

Interesting On-Line Reading
  Sutherland, Jeff. SCRUM: Another way to think about scaling a project. 11 March

2003, on the web at Jeff Sutherland’s SCRUM Log. On how the Organizational
Patterns work is the foundation of SCRUM. http://jeffsutherland.org/scrum/
2003_03_01_archive.html

  Schwaber, Ken. Scaling Agile Processes. In the Agile Project Management E-Mail
Advisor, 3 April 2003. QPW as an example of scaling Agile processes. http://
www.cutter.com/project/fulltext/advisor/2003/apm030403.html

  Coplien, James. Borland Software Craftsmanship: A New Look at Process, Quality
and Productivity. Proceedings of the 5th Annual Borland International Conference.
http://users.rcn.com/jcoplien/Patterns/Process/QPW/borland.html

  Harrison, Neil, and James Coplien. Patterns of Productive Software Organizations.
Bell Labs Technical Journal 1(1), Summer 1996. http://users.rcn.com/jcoplien/
Patterns/paper11.pdf

  Cain, Brendan, et al. Social Patterns in Productive Software Organizations. Annals
of Software Engineering, December 1996. http://www.baltzer.nl/ansoft/articles/
2/ase004.pdf

References and Online Resources
James O. Coplien. Organization and Architecture. In 1999 CHOOSE Forum on Object-Oriented

Software Software Architecture, pages 5-1 - 5-25, March 1999. Bern, Switzerland, Swiss
Informaticians Society. A keynote on the architectural impact of organizations. http://
www.bell-labs.com/user/cope/Talks/Arch/CHOOSE99/.

Organisatorisk Agility Program, http://www.nordija.dk/da/Konsulentydelser/
OrganisatoriskAgility.html

Neil B. Harrison and James O. Coplien. Patterns of Productive Software Organizations. Bell Labs
Technical Journal, 1(1):138-145, Summer (September) 1996. A good summary paper on the
techniques and findings in the organizational pattern work. http://www.lucent.com/minds/
techjournal/summer_96/paper11/.

James O. Coplien, Neil Harrison, and Gertrud Bjørnvig. Organizational Patterns: Building on the
Agile Pattern Foundations. http://www.cutter.com/offers/orgpatterns.html. Free, but requires
signup.

James O. Coplien. A Development Process Generative Pattern Language. In James. O. Coplien
and Douglas C. Schmidt, editors, Pattern Languages of Program Design, chapter 13, 183-237.
Addison-Wesley, Reading, MA, 1995. http://www.easycomp.org/cgi-bin/
OrgPatterns.

References, continued.
Gabriel, R. Patterns of Software: Tales from the Software Community. New York: Oxford

University Press, 1998. For the case study Cope presented. See the chapter on the re-
engineering of ParcPlace Systems.

Neil B. Harrison. Organizational Patterns for Teams. In John Vlissides, James O. Coplien, and
Norman L. Kerth, editors, Pattern Languages of Program Design 2, chapter 21, 345-352.
Addison-Wesley, Reading, MA, 1996.

Brendan G. Cain and James O. Coplien. A Role-Based Empirical Process Modeling Environment.
In Prodeedings of Second International Conference on the Software Process (ICSP-2), pages
125-133, February 1993. Los Alamitos, California, IEEE Computer Press.

Brendan G. Cain, James O. Coplien, and Neil B. Harrison. Social Patterns in Productive Software
Organizations. In John T. McGregor, editor, Annals of Software Engineering, 259-286. Baltzer
Science Publishers, Amsterdam, December 1996.

