
1

“Big Workflow” for Enterprise Applications
Jeff Sutherland and Steve Alpert

IDX Systems Corporation, 29 September 1999
mailto:jeff.sutherland@computer.org

Introduction

Integration of multiple disparate systems to support enterprise business processes across a
supply chain or within a healthcare delivery system is a significant new opportunity
presented by the internet infrastructure that is becoming widely accessible to all
interested parties. Taking advantage of that opportunity requires implementation of an
enterprise workflow capability that transcends previous workflow implementations or
standards.

This paper provides an overview of the current evolution of workflow standards and
implementation efforts designed to support enterprise workflow across multiple
institutions, each running a wide variety of disparate systems. The goal is to use internet
standard (or evolving internet standard) capabilities throughout.

Background

“Big Workflow” is a term that has been used at IDX Systems Corporation to describe
workflow that crosses multiple applications and multiple vendors to support patient flow
across an Healthcare Integrated Delivery Network (IDN). Similar systems have been
implemented or are under construction in manufacturing and other vertical application
domains.

As an example, HeathSystems Minnesota has carefully defined their business processes
for managing patient flow across multiple institutions within their IDN. Workflow must
be managed across 134 large applications provided by dozens of vendors. They would
like the capability to superimpose HealthSystems business processes across all vendors
and they would like to be able to modify their business processes globally without
modifying vendor systems.

“Big Workflow” is federated, heterogeneous, distributed, enterprise workflow. An
enterprise in this context consists of federated systems that have their own rules and
regulations and support higher level interaction between systems (like the United States
which is a federation of states). Systems are distributed (regionally, nationally, or
globally) and may reside on different (heterogeneous) hardware/software platforms.
Completing a Process Instance (see WfMC definitions in later section) may require
completion of multiple work items by multiple users (human and automated) performing
a myriad of roles and supported by large numbers of computing systems.

2

Workflow systems have become both more widely deployed and more adaptable in
recent years. Traditionally, they were monolithic and required the installation of client
software on the desktop. With the advent of Java, commercial software quickly moved
towards applet-based clients and to more distributed systems.

More radically, workflow systems are increasingly taking advantage of Internet
technologies to become more open. One example is the Workflow Management
Coalition (http://www.aiim.org/wfmc/mainframe.htm) initiative to promote XML-based
interoperability among workflow systems, which builds on earlier work on the draft
Simple Workflow Access Protocol (SWAP) initiative. The Internet Engineering Task
Force (IETF) Simple Workflow Access Protocol is a critical background resource for this
work (http://www.ics.uci.edu/~ietfswap) as all efforts are directed at Internet
implementations. A good overview can be found in SWAP: Leveraging the Web to
Manage Workflow (http://www.ics.uci.edu/~ietfswap/swap-paper.pdf). At a higher-level
of abstraction are efforts to develop adaptable agent-based workflow systems
(http://www.aiai.ed.ac.uk/~paj/ijcai-wflow-wshop/). Workflow specification,
standardization, and development efforts are intensifying as the coordination of work
among organizations becomes an important component of electronic commerce.

Additional background may be found in Object Management Group (OMG) standards
documents. The WfMC worked with the OMG BODTF Workflow Special Interest Group
to develop jFLOW, now the OMG standard for workflow
(ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf). The current state of jFLOW was
presented at the OOPSLA’98 Business Object Workshop by the Chair of the WfMC.
(http://jeffsutherland.com/oopsla98/mts.html). Another OMG BODTF document with
concepts of interest is the latest version of the Business Object Component Architecture
(http://192.245.64.8/dat/Download/standards info/boca0599.pdf).

Moving beyond the state-of-the-art: Rainman

At the OOPSLA’97 Business Object Workshop, Santanu Paul presented Essential
Requirements for a Workflow Standard. He reviewed work on Rainman: A Workflow
System for the Internet at IBM T.J. Watson Research Center and pointed out deficiencies
in the WfMC architecture.

3

Figure 1: Distributed Workflows: Heterogeneous Servers, Participants, and Applications on a WAN from
Essential Requirements for a Workflow Standard.

For users distributed on the Internet, the following requirements are essential:

Based on scenarios such as the one above, Santanu Paul et. al. established the following
requirements for a distributed workflow infrastructure seem appropriate:

• Heterogeneity of workflow components: The basic execution model must be
that of multiple, heterogeneous workflow backends (servers or systems) on the
wide area network that are capable of executing workflows. Symmetrically,
heterogeneous workflow participants or service providers on the network such as
humans, applications, business objects, and invoked workflow systems that are
utilized during workflow execution should be able to receive work from multiple
workflow backends.

• Flexible and scalable workflow participation: Workflow participants should be
able to participate using traditional devices (such as desktops) as well as
nontraditional devices (such as thin clients, or personal digital assistants).
Participants should not have to know a priori of specific backends that send them
work. They should not have to maintain dedicated connections to the workflow
backends from which they receive work, since this precludes thin clients from
participating effectively as workflow clients.

• Plug-and-play support for business objects and applications: Third-party
providers or developers of business objects and applications should be able to
’workflow-enable’ their components and plug them into the distributed workflow
infrastructure cheaply. They should not have to know any details about the
workflow backends that are going to use these components in the course of
workflow execution.

• Disconnected operation: Workflow participants may be mobile and infrequently
connected to the network. Location-independent, disconnected workflow
participation must be natural to the workflow execution model.

• Recursive Decomposition of workflows, dynamically: The execution model
must support dynamic recursive decomposition of workflows. Work items
assigned to participants may be dynamically refined and implemented as nested
workflows, in a recursive manner. In other words, late-binding of work items
should be allowed and it should not be necessary to statically define every step
(and nested steps) of a workflow prior to its execution.

Essential Requirements for Interface to Other Workflow Systems

The Workflow Management Coalition (http://www.aiim.org/wfmc/mainframe.htm)
initiative to promote XML-based interoperability among workflow systems is an
evolving document, currently in alpha phase. It is a further development of the IETF
SWAP document referenced previously which assumes that the HTTP protocol can be

4

extended. At time of writing, Internet Explorer 5.0 does not support HTTP extensions,
just one of the myriad of implementation details that must be resolved.

In order for “Big Workflow” to support interoperability between other web-based
workflow system, several interfaces need to be supported. All definitions below are
quoted from WFMC-TC-1023, Draft 1.0, 20 April 1999:

• ProcessDefinition – used to create process instances and find general information
about process definitions. It contains the methods PropFind,
CreateProcessInstance, and ListInstances.

• ProcessInstance - used to communicate with a particular instance of a process
definition (or enactment of a service), acquiring information about the instance,
controlling it and modifying it’s properties. Since a given instance may continue
to execute for any amount of time, methods may be called on an instance while it
is executing. These methods may obtain status information, supply new input
values (although how these are handled is dependent on the specific
implementation and the task being performed), or obtain early results (although
the results of a process instance are not final until the instance has been
completed). This interface contains the methods PropFind, PropPatch,
Terminate, Subscribe, Unsubscribe and GetHistory.

• Observer - allow requesters of work or other resources to monitor the progress of
a process instance and be notified upon it’s completion. Methods are provided to
allow a resource implementing this interface to obtain information about a process
instance for which that resource is a registered observer, as well as to notify
registered observers of events if the implementing resource is the performer of the
work. Once an instance’s registered observers have been notified of it’s
completion or termination, the resource responsible for that instance is not
required to maintain it any longer. Therefore, while most events are not required
to be notified, the “completed” and “terminated” events must always be notified
in order to indicate to observers that the results are final and this resource may
shortly become inaccessible. This interface contains the methods PropFind,
PropPatch, Complete, Terminated and Notify.

• ActivityObserver - is very similar to the Observer interface, with the primary
difference being that it is relevant to a particular task, or “activity”, within a
process instance. Implementing the interface at this level provides a way to find
the particular process instance that contains a given activity, which further
provides a way of tracking all the activities contained by that process instance.
Finally, if any of these activities are other (sub) process instances, they can also
be discovered via this interface. This traversal of instance/activity relationships
can support distributed, nested process management to any level. Because of this
potential nesting, it is important to note that the ActivityObserver resource must
supply/expect information going to/coming from a process instance to be in that
instance’s context. Therefore, data exchanged with that instance will be expressed
with the set of fields relevant to that particular instance. This interface contains
the methods PropFind, PropPatch, and Complete.

5

• WorkList - allows the potentially numerous distributed processes being
performed throughout an interoperating enterprise to be filtered based on their
relevance to a particular (human) user. While the WorkList and WorkItem
interfaces parallel the ProcessDefiniton and ProcessInstance interfaces in some
respects, they differ in that WorkList and WorkItem represent only the
information about work to be performed, rather than representing the actual
resources that perform it. Implementing the WorkList interface, when a system
assigns an activity to a user it would create a workitem for that user on the user’s
worklist server (identifiable via a user directory) that corresponds with the activity
being assigned. This interface contains the same methods as the
ProcessDefinition interface (PropFind, CreateProcessInstance, and
ListInstances).

• WorkItem - differs somewhat substantially from ProcessInstance in that its
resource does not have any predefined action. It is merely a pointer to another
resource that performs an activity, picking up the description of the task from the
activity. This interface also provides a means of indicating the activity’s status to
the user. The user does not directly interact with the workitem, but rather with the
activity via the workitem’s pointer. Once the activity is completed, the workitem
should be removed from the user’s worklist. This interface contains the same
methods as the ActivityObserver interface (PropFind, PropPatch and
Complete).

• EntryPoint - used to create a process instance with a particular starting point
within a process definition. If this interface is to be implemented, the process
definition resource will have to provide a series of predefined entrypoints. Each
entrypoint can potentially have it’s own input requirements, access control, etc.,
which will have to be enforced by the implementation. This interface provides
valuable functionality, but is optional, as process instances can be created directly
through the ProcessDefinition interface if no special entrypoint is required. This
interface contains the methods PropFind and CreateProcessInstance.

The following table indicates which methods are contained by each interface, and
conversely which interfaces contain each method.

Process
Definition

Process
Instance

Observer Activity
Observer

Work List Work
Item

Entrypoint

PropFind X X X X X X X
PropPatch X X X X
CreateProcess
Instance

X X X

ListInstances X X
Terminate X
Subscribe X
Unsubscribe X
GetHistory X
Complete X X X
Terminated X
Notify X

6

Agent Technology

The trajectory of enterprise systems is moving from:

• Monolithic systems to modular systems (APIs are there to be used)
• Modular systems to object-oriented systems (RMIs are there to be used)
• Object systems to component systems (loosely coupled)
• Component systems to internet workflow systems (XML messaging)
• Workflow systems to agent-based systems (goal-seeking, brokering, etc.)

To a significant extent, each step is a prerequisite to the next step. Let’s take a simple
example, prescription renewal. The average pharmacist spends 70% of their time calling
doctors to try to get approval for prescription renewals. Patients are frustrated and often
lack medication.

A patient should be able to pull up their medications in a Web browser and click to
request a prescription renewal. This should generate a workflow that allow the online
medical record to approve the medication 80% of the time. The remaining 20% of the
time, the request should be put on the physician’s worklist and the patient should be able
to track the request on the internet like a Federal Express package. If the physician does
not renew or reject in a specified interval, the workflow should escalate this task. When
approval is received, the computer should submit the request, print the labels, and put the
prescription on the appropriate pharmacist’s worklist. In no case should the pharmacist
ever have to call the doctor for approval. This would eliminate 70% of the total
pharmaceutical workload in the United States!

Better yet, the patients agent should be monitoring prescription renewal requests and
prompting the patient to renew or not renew before it became an emergency.

The Agent Working Group, part of the OMG Electronic Commerce Task Force has
developed a green paper on Agent Technology, OMG Document ec/99-08-06. Emerging
business object systems need more intelligence and are essentially complex, adaptive
systems. See:

Sutherland, J. Business Object Component Architectures: A Target Application Area for
Complex Adaptive Systems Research. In Patel , D., Sutherland, J., Miller, J., (Eds.)
Business Object Design and Implementation II: OOPSLA’96, OOPSLA’97, and
OOPSLA’98 Workshop Proceedings. Springer, 1998.

Workflow systems need to interoperate with agent infrastructures. The Agent Technology
Green Paper references:

Foundation for Intelligent Physical Agents. FIPA98 Agent Management Specification.
Geneva, Switzerland, Oct 1998.

7

FIPA98 lays out an architecture for an agent infrastructure which includes an
AgentWrapper. An area of future development is creating of an AgentWrapper to “Big
Workflow” that enables seamless interoperability with an agent environment.

This work is of particular interest for e-commerce systems (which are already
incorporating agent technologies). Healthcare will move to an e-commerce environment
and these technologies will need to be supported.

Definitions

The Workflow Management Coalition (WfMC) Glossary and Terminology
(http://www.aiim.org/wfmc/standards/docs/glossy3.pdf) is an important source of
definitions that we will use wherever possible (see Figure 1 below).

Figure 1: WfMC Workflow Glossary –Relationships between basic terminology

Process Instances are a graph of nodes of activity, typically a tree of nodes where units
of work flow in a logical sequence. Each node or Activity Instance may be delegated to
any user (human or automated) on the enterprise network by a workflow engine (or a
Workflow Management System).

8

The Enterprise can consist of one corporate entity or may extend its reach to suppliers
and partners. In a healthcare setting, patients will ultimately be viewed as part of the
enterprise, and will be able to initiate enterprise workflows on their own behalf.

The ability to have multiple workflow engines residing on any server in the enterprise
assign and track units of work (Work Items) to be completed on any other server in the
enterprise will allow the CIO of an enterprise to specify an enterprise workflow for a
patient (or other package of materials that need work) and layer the global workflow on
heterogeneous application systems supported by multiple vendors.

Workflow Concepts

The workflow management system will consist of Performers, processes that perform
work items on a WorkList.

A Process Manager is contacted to initiate workflow with a requested Process
Template. The Process Manager looks up the appropriate Process Template and
creates a Process Instance. Then:

1. A validity check is done to insure sufficient context is available to complete the
request.

2. A Policy Manager is consulted to get an assignment of the required resource
(Performer).

3. An LDAP is consulted to find the WorkList for that Performer.
4. A WorkflowEngine is asked to determine the “first activity” of the Process

Instance.
5. The instance together with the required context are inserted on the WorkList for

the Performer.

A WorkflowEngine is a lightweight process that:

1. Is a Performer with a performer interface.
2. Can traverse the nodes in a Process Instance graph. It puts WorkItems on

Performer WorkLists.
3. Works off a persistent WorkList that is specialized in the sense that it keeps track

of all the workflow requests and their status on a specific server.
4. Typically runs a department in an enterprise.
5. Can run on any server in the enterprise.

The PolicyEngine is responsible for determining who should perform workflow requests.
When a WorkflowEngine WorkList item does not have a performer assigned, the
WorkflowEngine asks the PolicyManager to assign a Performer to appropriate tasks.

An Observer observes a set of workflows in the enterprise and is able to report on their
current state. An Observer is a specialized type of Performer and there may be several
types of Observers:

9

• A WorkList observes itself.
• An archival Observer.
• A statistical Observer generating summary statistics.
• An Observer waiting for a subsidiary workflow to get done.

A Performer is a human or a machine that has a WorkList that may be filled with
WorkItems by one or more WorkflowEngines. A Performer may delegate pieces of
work to another Performer, i.e. act like a WorkflowEngine.

The entire system can be hierarchically defined as a set of controllers with Performer
interfaces that operates off of persistent queues, or WorkLists. All queues are persistent
so that if any queue fails, the system can work around a disabled Performer or restart the
Performer without losing any WorkItems.

Confidential
information for
IDX customers
and partners
only:
Released under
confidentiality
agreement with your
institution.

Enterprise WorkflowEnterprise Workflow

ProcessProcess
ManagerManager

PolicyPolicy
ManagerManager

WorklistWorklist
ProxyProxy

WorkflowWorkflow
EngineEngine

LDAPLDAP

WorklistWorklist

1. Treat a patient

2. Who is
responsible? 3. Where is their

worklist?

4. What
happens next?

5. Insert work
item.

6. Do it!

Process
Templates

Summary

Experience has shown that internet standard technologies make it easy to implement “Big
Workflow” if:

1. The implementers have a broad background in previous workflow
implementations successes and failures.

2. Standards are well understood and implemented by application software,
particularly XML messaging.

10

3. A small, specialized group with deep computer science background does the early
prototyping and specification.

Just as workflow can be easily layered over a loosely coupled set of application
components, agent technologies can be layered over workflow capabilities reducing the
adaptation time of a complex adaptive system from months or years (with programming
software interventions) to minutes or seconds in real time. The economic implications are
enormous, particularly in healthcare.

