
More recently, business object components have been
used to provide a services-oriented interface to external sys-
tems and allow interoperability between systems. Tightly
coupled approaches such as COM and CORBA have
proven inflexible in an inter-enterprise context. Business-
to-business Web transactions are becoming loosely coupled
through XML/SOAP interactions. In addition, coordina-
tion of activities to provide business process support
between business partners is enabled through workflow
architectures driving loosely coupled systems. Finally, ser-
vices on demand requires response to goal-seeking behav-
iors exhibited by software agents, the ability to search for
compatible components and services, methods for estab-
lishing contracts and commitments between alien agencies,
and marshalling binding between disparate systems.

The preceding phases of EAI exemplify the fact that
progressive organizations are eager to move from process
integration to support long-term business relationships
with more volatile organizational shapes, such as flexible
virtual alliances, with loosely coupled business processes
and supporting Web-services orchestrations that are in fact
agentified and exhibit Complex Adaptive System (CAS)-
like behavior. Virtual alliances are subject to a wide variety
of (un)expected changes; some of them initiated internally
(reinvented business policies), others imposed by external

organizations (changing tax regulations). Despite the fact
that it is not possible to anticipate all consequences of such
business changes, they must be swiftly mapped to the
business application level without disrupting integrated
business processes.

Improvements in productivity are required to fulfill
these critical requirements. In the 1990s, the growth of
productivity was assumed to be caused by more effective
development and use of IT, as opposed to the 1980s when
no increase in productivity from computing was visible
(Solow’s paradox). Closer examination reveals that recent
increases in output have occurred primarily within the
semiconductor and related industries (Moore’s Law
effect). Productivity has actually declined in many indus-
tries with large software implementations such as hotels,
retail banking, long-distance communications, and health
care. This may be due to widespread implementation of
stovepipe technologies acting as isolated islands of
automation that cannot collectively adapt to changing
business needs.

Our premise here is that the economic benefits of com-
puting rely heavily on integration of disparate systems as
opposed to traditional point-to-point interfaces; the cap-
ture and control of legacy technology in a way that forces
alignment with business change (even in real time); and

� By Jeff Sutherland and Willem-Jan van den Heuvel

Could system integration and cooperation be improved
with agentified enterprise components?

Enterprise Application Integration and
COMPLEX ADAPTIVE SYSTEMS

COMMUNICATIONS OF THE ACM October 2002/Vol. 45, No. 10 59

he ubiquity of the Internet enables enterprises to line up into virtual alliances
with loosely coupled business processes organized along the axis of the virtual
value chain, resulting in competition between rather than within vertical indus-
tries. This highly challenging process has recently evolved through several levels
of integration from isolated legacy silos of enterprise information to agile and
cooperative information systems. Batch data transfers have traditionally been
accomplished through nightly magnetic tape inputs in banking systems. These

have evolved into real-time point-to-point interfaces extensively used in banking, health care, and man-
ufacturing systems to coordinate data flow between systems. This traditional Enterprise Application
Integration (EAI) is tedious, expensive, and inflexible.

system evolution that enhances, rather than disrupts,
output. Evolution of enterprise systems in real time
requires new approaches to systems integration and
adoption of CAS techniques to manage complexity
while providing flexibility and adaptive behavior.

Moving Beyond Point-to-Point Interfaces
To meet integration and adaptability requirements and
accomplish more effective reuse from existing business
applications, distributed business object technology is
generally perceived as the ideal solution. Business
objects can be aggregated into enterprise components
that provide business services. Enterprise components
can be key building blocks in the integrated company
as event-driven business processes are realized. More-
over, they facilitate the refactoring of a legacy system by
wrapping them and integrating them in new applica-
tions. Assembling enterprise components into domain-
specific applications can be greatly leveraged by
organizing them into business frameworks, which can
be easily configured and deployed while relying upon
distributed broker architectures such as CORBA [4] or
emerging Web services standards such as the W3C
Web Services Description Language (WSDL) [2].

One important characteristic of business object
technology, which contributes to the critical challenges
described previously, is the explicit separation of inter-
face and implementation of a class. Enterprise compo-
nent technology, in aggregating business objects as
services, takes this concept a step further by supporting
interface evolution in a way that allows the interfaces of
classes to evolve without necessarily affecting the clients
of the modified class. This is enabled by minimizing
the coupling between enterprise components and
applying self-describing messages to describe the para-
meter passing semantics [3].

Currently, distributed enterprise component tech-
nology, such as Enterprise JavaBeans and .NET, provide
interface description languages and services that allow
distributed objects to be defined, located, combined,
and invoked. The primary benefit of using them is to
encapsulate the heterogeneity of legacy systems and
applications within standard, interoperable wrappers.
This infrastructure must support the migration of large
numbers of independent multi-vendor databases, mid-
dleware technologies, and standard packages (IBM’s
WebSphere and MySAP) into dynamic and highly inte-
grated, evolvable, enterprise information systems (EISs)
running over distributed information networks. Thus,
integrated enterprise information systems have highly
unpredictable, non-linear behavior where even minor
occurrences might have major implications.

The same phenomena have been observed in the
domain of physical and biological systems, be it either

an individual animal or a swarm of cooperating bees,
and has been extensively researched in the area of Com-
plex Adaptive Systems [1, 6]. Holland defines CAS as
systems composed of interacting agents, which respond
to stimuli, and stimulus-response behavior that can be
defined in terms of rules [6]. Agents adapt by changing
their rules as experience accumulates and can be aggre-
gated into meta-agents whose behavior may be emer-
gent (not determinable by analysis of lower-level
agents). A brief review of the CAS characteristics of sev-
eral successful EAI projects from a business object tech-
nology perspective follows. The purpose of this review
is to derive design parameters and patterns for success-
fully integrating enterprise applications.

CAS Characteristics
Enterprise application integration from a Enterprise
Component/CAS perspective requires an understand-
ing of Holland’s synthesis of CAS concepts, which are
outlined in the following paragraphs.

Aggregation (property). There are two important
modes of aggregation in CAS systems, objects and
components. Aggregation is a basic mechanism in
object modeling and is the basis for identity, a funda-
mental object concept. Forming components out of
objects and enterprise systems from components is
higher-level aggregation. More important are emergent
properties such as intelligence that evolve out of dumb
subsystems. This is the basic concept in Minsky’s Sci-
ence of Mind or Hofstader’s analysis of an ant colony
[5]. Meta-agents (an enterprise) are formed of aggre-
gates of agents (enterprise systems) and exhibit emer-
gent behaviors (revenue, profitability, and cash flow,
the indices of value creation).

Tagging (mechanism). This mechanism facilitates
the forming of aggregates, from HTML pages to the
mechanisms in CORBA or DCOM that allow inter-
object communication and facilitate selective mating
(for example, firewalls block certain tagged elements to
protect the enterprise). Thus they preserve boundaries
between aggregates. They allow us to componentize
object models and enable filtering, specialization, and
cooperation. They are the mechanism behind the
development of hierarchical aggregates that exhibit
emergent behaviors like an operating system. The basic
mechanisms of evoking operations through messages
in object technology are based on tagging strategies.

Non-Linearity (property). Non-linear systems
exhibit catastrophic and chaotic behaviors. Traffic flow
on the Internet is a prominent example of a non-linear
system, leading to predictions of the collapse of the net-
work. Other examples encompass brownouts, system
loadings, and scalability effects. Lastly, the rate of con-
struction of software itself is a non-linear phenomenon.

60 October 2002/Vol. 45, No. 10 COMMUNICATIONS OF THE ACM

Flows (property). This property designates in its
simplest form streams between nodes and constitutes
the basis for recycling. Workflows and tags that define
and condition flows, exemplify this property. Flows
typically have a multiplier effect. Money injected into
the economy has an effect out of proportion to the
amount, similar to email viruses or other message flows
on a network. The recycling effect of flows enables the

rain forest, an enterprise information
ecosystem, or viral adoption of Inter-
net services and applications. Individ-
ual pieces evolve, die, are replaced or reused, constantly
changing the characteristics of an information system.
Living software is software that is constantly changing
due to flows, as rivers change their course. Dead soft-
ware is eventually detritus that is expelled from the
enterprise organism.

Diversity (property). Persistence of an individual
agent depends on the ecosystem of agents that sur-
round it, whether the agent is an ant in the rain forest
or a business object in an accounting system. The evo-
lution of these agents as software changes causes con-
vergence of system architectures. This is the basis of
emergent patterns that reappear again and again in
widely disparate computational environments. It is dif-
ficult to evolve a single agent to make it more useful in
an isolated context. Usefulness in business object sys-
tems arises from interactions between diverse agents as
in human societies.

Internal Models (mechanism). The utility of com-
plex systems is enhanced if the system can learn from
experience and adapt its behavior. The ability of the sys-
tem to develop and act on internal models that simplify
the external world is basic to this mechanism. It allows
the system to infer the results of actions before they are

taken, and to choose actions that have productive
results. The prospects for longevity of software systems
depend on this capability, just as in living systems.

Building Blocks (mechanism). Reuse is dependent
on building blocks used over and over again. It is the
basis of Moore’s Law in hardware production. It could
be the basis of dramatic improvements in software pro-
ductivity. Building blocks are the basis for generation of

internal models and are essential to
the construction of adaptive enter-
prise systems.

Case Studies
In the following two examples, we
reflect on two practical case studies
to refine our understanding of CAS
in the context of EAI.

Case 1: The Merger of Two
Insurance Companies. Van den
Enden et al. [6] provided a creative
example of “capturing” two enter-
prise systems. The merger of two
insurance companies required dis-
parate system integration. The front-
office system from the first company
was built on Sun hardware using the

Forte 4GL environment. The second company had a
back-end system that ran on Unisys mainframe hard-
ware and was coded in LINC, a Unisys code-generation
language. Van den Enden et al. decided to use a work-
flow engine, intelligent adapters, and XML messaging
as the core of their integration strategy. New technology
was superimposed on the old in order to enable: inter-
action between Web HTML clients and mobile WML
clients; utilization of standard XSLT transform mecha-
nisms; easy integration with future systems in electronic
marketplaces through XML; and validation and lan-
guage mapping capabilities available with XML DTD
and XML Schema tools.

Van den Enden’s architecture “captured” the dis-
parate systems with a workflow engine (Sun’s Forte
Conductor). All business logic is encapsulated in a
workflow, and the architecture uses intelligent adapters
to provide for the ‘glue’ that links the external applica-
tions to the workflow. Adapters transform XML mes-
sage formats into other data formats or into objects and
are able to take different actions based on the content
of the message. Sun’s Forte Conductor graphical tools
are used to set up a process definition, which describes
how to initiate a process, what step the process is in,
and who is responsible for executing the step (the front-
end user or the back-end system). All details of the
front-end or back-end systems are hidden from the
workflow layer. Thus Forte Conductor “conducts” the

COMMUNICATIONS OF THE ACM October 2002/Vol. 45, No. 10 61

1970 1990

Low Complexity

High Complexity

Tight
Coupling

Low
Coupling

Living
Organism

1975

Productivity
Phase 5:
Agentified
Dynamically
Collaborating
Business
Object

Phase 4:
Workflow
Driven
Loosely
Coupled
Static
Systems

Phase 3:
Tightly
Coupled
Web
Transactions

Phase 2:
Point-to-
Point
Interfaces

Phase 1:
Batch
Transfer

2002 ????

Figure 1. Evolution

of EAI.

execution of a process
instance by human and
machine interactions.

The back-end architec-
ture of this system is
depicted in Figure 2. When
a node in the process
instance requires the cooper-
ation of the back-end sys-
tem, it sends an XML
message to a “robotic” client.
This agent orchestrates the
flow of commands required
to integrate the back-end
system into the workflow.
Similarly, the Conductor
workflow engine sends XML
messages to a front-office
adapter, which insulates the
front-office system from the
workflow layer.

In this architecture, two
legacy systems are aggregated
into a single system by
adapters controlled by the
workflow engine. Non-linear
behavior induced by actions
of goal seeking agents is
avoided in this system by
essentially hardcoding work-
flows and tuning them prior
to production. Flows are
managed by the workflow
engine and routed using tags
supported by the infrastruc-
ture of XML and diversity is managed by shielding the
workflow engine with “robotic” clients.

We would not expect emergent behavior in this sys-
tem because of hardcoding workflows and implicitly
defined and fixed internal models. However, since the
architecture abstracts business processes from the more
rigid legacy system, it would support future extension of
the system to support agents with adaptive internal
models that could dynamically define workflows within
the limits of defined adapters. In particular, this system
implements a fundamental concept that will be charac-
teristic of future adaptive systems—automated work-
flow drives business processes, in place of human
interaction. This is an excellent example of “capturing”
the software of two legacy systems and repurposing
them for future flexibility. It preserves legacy investment
while freeing legacy systems from many limitations.

Case Study 2: Mobile Device Platform for Inte-
gration of Hospital (Legacy) Information Systems.

The Internet proliferation has
inspired an outpouring of predic-
tions that the health sector’s long-
awaited breakthrough in
information management is
finally at hand. But will network
computing really help create
order amid the impenetrable
maze of insurance claims, clinical
records, and quality data in which
the key to a more efficient system
now lies hidden? Or will the ulti-
mately localized, idiosyncratic,
and fragmented enterprise of care
continue to prove resistant to
rationalization?

A more sophisticated problem
of enterprise integration is intro-
ducing “point of sale” technolo-
gies into health care. Over 95% of
clinicians have no automation at
the point of care in the U.S. ver-
sus more than 90% with some
level of automation at the point of
care in the U.K. and Canada. The
net result is a tremendous loss of
money due to unbilled or incor-
rectly coded charges (an average
of 8–10% in large integrated
health care delivery networks).
Loss of funds in failed reimburse-

ment for laboratory tests due to miscoding or failure to
demonstrate medical necessity can result in the loss of
tens of millions of dollars annually for a single institu-
tion. Even worse is the fact that medication error is
(conservatively) the fourth leading cause of death in the
U.S. and that minimal levels of automation would
reduce these deaths by 50–80%. Patient safety has been
declared a national emergency by the National Acad-
emy Institute of Medicine [8]. In fact, when all sources
of iatrogenic deaths are included, such as nosocomial
infections, preventable medical error is the third lead-
ing cause of death by a wide margin, exceeded only by
heart disease and cancer.

Solving this problem requires a complex EAI effort.
First, a large Integrated Delivery Network (IDN) will
often have hundreds of disparate software systems, sev-
eral of which will need to be integrated to support even
a single limited application like generating a bill for
treatment. Second, physicians are inherently mobile
and have no immediate access to any of the informa-
tion in these hundreds of systems. Adoption of per-
sonal computers and online medical records is
vanishingly small at the point of care. However, almost

62 October 2002/Vol. 45, No. 10 COMMUNICATIONS OF THE ACM

Figure 2. Overview of
back-office adapter [10].

Adapter

Business Process

Integration Flow

MOSeries Integrator

MOSeries

Back-Office System

<xml>
 <data/>
</xml>

<xml>
 <data/>
</xml>

RBC

<xml>
 <data/>
</xml>

Robotic Client

RBC RBC RBC

30% of physicians today carry a mobile device such as
a Palm Pilot or PocketPC and the number is growing
quickly. Third, the cost of mobile devices and wireless
communication is dropping rapidly to the point where
total cost of ownership (TCO) is 20% the cost of sup-
porting a laptop.

One could argue that reducing the fourth leading

cause of death by 50–80% is the
most humane act computer pro-
fessionals could possibly provide in
terms of reduction of human pain and suffering. Tack-
ling this problem requires four layers of distributed sys-
tems technologies. Cache consistency across all layers of
these systems must be maintained precisely to avoid
medical errors. An integration platform architecture for
support of mobile/wireless applications at the point of
care is shown in Figure 3.

The top layer of this architecture is the mobile
device. While the platform needs to support a wide
variety of device types, clinicians only want one device
in their coat pocket. The handheld device provides a
mobile patient index integrated with back-end legacy
systems and an application API, which allows indepen-
dently authored applications to plug into the frame-
work. All applications are interoperable in the sense
that the clinician selects a patient, subsequently selects
an application that automatically understands the
patient context, and applications share both data and
functionality. Key requirements are a single sign-on and
security infrastructure, application interoperability, and
“always-ready” operations. When the device is discon-
nected from the network, applications run off the local

device datastore. When the device is reconnected by
any wireless or wired mode, it automatically synchro-
nizes with back-end databases and runs as a connected
application.

The second layer of the architecture is a synchro-
nization server, which must support a wide variety of
device types. Information flowing to the mobile device
must be personalized to the specific device, clinician,
and application. For example, if Dr. Palm is a cardiolo-
gist, he has a set of applications oriented toward cardi-
ology. He wants to see his own patients on his Palm
Pilot or PocketPC and their lab results. If he is in his
office, he may want to be alerted on his Palm Pilot.
When he is on the golf course he may want to be paged.
If he is on call he will want another physician’s patients
to transparently appear on his mobile device.

The synchronization server must stage data, manage
personalization, and handle routing, alerting, and mes-
saging. It must keep the data cache on the mobile
device synchronized with lower-level databases in the
architecture. In order to manage a complex set of clini-
cal and financial data requiring extensive authorization,
security, and auditing features, a robust, fault-tolerant,
clinical repository is required. This is the third layer of
the architecture. In addition to managing patient data,
the repository must manage multiple record numbers
for the same patient, which exist independently on
dozens of legacy systems. It must also manage a com-
plex network of EAI between dozens of independent
application systems. For example, if Dr. Palm is in the
hospital on rounds he wants data to flow to and from
the hospital financial and clinical system. When he goes
back to the ambulatory clinic, he wants to see data
flowing to and from the clinic financial and clinical sys-
tems. Clinic systems are typically isolated from hospital
systems. Nevertheless, physicians want all this to be
transparent to whichever hospital or clinic they are in at
the moment.

The clinical repository in this example is integrated
using a component object strategy. The repository pro-
vides OO component interfaces to the synchronization
server. The messaging protocol between the synchro-
nization server and the repository is XML using SOAP
as an RPC mechanism.

The fourth layer of the architecture are the legacy
systems themselves. They can be integrated via adapters
as in the previous insurance example, or interfaced
using standard message formats or proprietary legacy
interfaces. The architecture aggregates multiple hetero-
geneous systems through component objects, adapters,
or messaging interfaces. It also aggregates data from
back-end legacy systems and manages the consistency
of data across layers of the architecture. Flows are han-
dled by workflow engines at both the synchronization

COMMUNICATIONS OF THE ACM October 2002/Vol. 45, No. 10 63

Figure 3. The Patient-
Keeper architecture.

Portable Device

Mobilizer Server

Clinical Repository

Legacy
Apps

Web
App

Patient
Manager

Alert
Manager

Transport
Protocol

Transport
Protocol

Transport
Protocol

Transport
Protocol

Webtop
Protocol

Web Portal
Adapter

Other
Adapter

Synchronization
Protocol

App.1

Inter-Application Framework

Synchronization
Workflow Engine

Component API
Patient Management
EMPI Interfaces

Clinical Repository (Oracle)

Database Personalization API
Data Access Layer API

Data Store

App.2 App.n

PatientKeeper
Workspace

server and clinical repository layers of the architecture.
Tagging is supported by XML infrastructure. Diversity
is shielded from the mobile device by the clinical repos-
itory. Building blocks are aggregated with a wide vari-
ety of integration patterns and mechanisms for
interoperability. The system is complex enough to
induce non-linear behavior but this must be managed
by manual tuning or coding. Internal models are
implicitly defined by hardwiring components for spe-
cific applications. There may be limited goal-seeking
behavior induced by hardcoded business rules in vari-
ous system layers.

A unique feature of this architecture is that mobile
devices can be used as a remote control to drive the
enterprise. Workflow drives business processes. How-
ever, humans at the remote control serve as intelligent
agents with goal-seeking behaviors. This architecture is
an excellent attempt to handle complexity but is not
adaptive. New configurations must be manually cre-
ated. To raise the level of adaptability requires moving
a workflow engine to the center of the architecture
while simultaneously distributing it across all enterprise
computing platforms.

Discussion and Outlook
Currently, we would not expect emergent (non-linear)
behavior in today’s integrated enterprise systems
because of the fact that workflows are generally hard-
coded in the integrated applications and internal mod-
els are implicitly defined and fixed. Despite this
shortcoming, the integrated component based applica-
tions did implement some of the remaining CAS prop-
erties, as exemplified in the case studies here. These case
studies indicated that enterprise components served as
a sound basis for future integration.

Comparing these systems with CAS has taught us
they require some extensions to support agents with
adaptive internal models to dynamically develop and
deploy loosely-coupled workflows within the limits of
defined adapters. In particular, business object systems
need to implement a fundamental concept that will be
characteristic of future adaptive systems—automated
workflow drives business processes—in place of human
interaction. Only in this way, enterprises can achieve
the highest level of integration that allows flexible “liv-
ing” virtual alliances with loosely coupled aggregated
and intelligent emergent behavior. Furthermore, the
case studies were excellent examples of “capturing” the
software of legacy systems and repurposing them for
future flexibility. Consequently, legacy investments
were preserved while freeing legacy systems from many
limitations.

Based on these observations, we strongly believe that
static implementations based on tightly coupled enter-

prise components do not allow systems to adapt oper-
ations based on the dynamic state of the runtime envi-
ronment. Next-generation systems must allow
autonomous business object components to decide
with whom to collaborate, what services to offer, what
services to request, and what visible behaviors to
exhibit. To accomplish this, enterprise component
assemblies need to be “agentified.” Coordination
between components is carried out by conversations
based on well-known coordination strategies [7]. These
strategies encompass composition protocols that pre-
scribe the way in which such agentified business appli-
cations interact while allowing dynamic adaptation.
Intelligent agents constitute the next higher level of
abstraction to component technology, which permit
them to negotiate with other agents about their
(mutual) goals [9], and even refactor their own goal-
oriented behavior.

The main challenge of CAS is to provide the capa-
bility to deal with emergent behavior of business sys-
tems. Well-designed CAS properties embedded in
enterprise systems could bring us closer to a software
architecture that could evolve as quickly as business
processes are now evolving in 21st century organiza-
tions. This could help provide global productivity gains
that have been elusive in all but the high tech hardware
sectors of our economies.

References
1. Arthur, W.B. On the evolution of complexity. In Complexity: Metaphors,

Models, and Reality, Proceedings Volume XIX. Sante Fe Institute Studies in
the Science of Complexity. G.A. Cowan, D. Pines, and D. Meltzer, Eds.,
Addison-Wesley, Reading, MA, 1994.

2. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. Web Ser-
vices Description Language (WSDL) 1.1 W3C Note 15 March 2001;
www.w3.org/TR/wsdl

3. Eeles, P. and Sims, O. Building Enterprise Components. Wiley, New York, 1998.
4. Fayad, M., Hamu, D., and Brugali, D. Enterprise frameworks characteris-

tics, criteria, and challenges. Commun. ACM 43, 10 (Oct. 2000), 39–46.
5. Hofstadter, D.R. Godel, Escher, Bach: An Eternal Golden Braid. Basic

Books, New York, 1979
6. Holland, J.H. Hidden Order: How Adaptation Builds Complexity. Addison-

Wesley, Reading, MA, 1995.
7. Jennings, N., Sycara, K., et al. A roadmap of agent research and develop-

ment. Autonomous Agents and Multi- Agent Systems, 1 1 (Jan. 1998), 7–38.
8. Kohn, L.T., Corrigan, J., et al. To Err Is Human: Building A Safer Health

System. National Academy Press, Washington, D.C., 2000.
9. Papazoglou, M. Agent-oriented technology in support of e-business:

Enabling the development of “intelligent’’ business agents for adaptive,
reusable software. Commun. ACM 44, 4 (Apr. 2001), 71–77.

10. Van den Enden, S., Van Hoeymissen, E., et al. A case study in application
integration. In Proceedings of the OOPSLA Business Object and Component
Workshop, 15th Annual Conference on Object-Oriented Programming Sys-
tems, Languages, and Applications, Minneapolis, 2001.

Jeff Sutherland (jeff.sutherland@computer.org) is the Chief
Technology Officer for PatientKeeper Inc., Brighton, MA.
Willem-Jan van den Heuvel (wjheuvel@kub.nl) is an assistant
professor at the Infolab in the department of Information Systems and
Management, Tilburg University, The Netherlands.

© 2002 ACM 0002-0782/02/1000 $5.00

c

64 October 2002/Vol. 45, No. 10 COMMUNICATIONS OF THE ACM

