
THE HYBIUD OBJECT-RELATIONAL ARCHITECTURE (HORA)
An Integration of Object-Oriented and Relational Technology

Jeff Sutherland Matthew Pope Ken Rugg
ODB, Cambridge, MA hfamam (hnade, Burlington, HO object Design, Burlittgt~ MA

~ 00DBMSRDBMS DATA SIORAGBAR~

Abstract
Many organizations with investments in relational datmbasa
management systems (RDBMS) want to build object-oriented
applications supporting a graphical u- interf=e without
foming programmers to deal with SQL and RDBMS Jirnitetions.
This paper proposes a natural and relatively transparent
coupJing of object-oriented clients with relational database
server technology for new applications. The epecified
architecture can concurrently deliver key features of both ‘lhe
Object-Oriented Database Manifesto* and the ‘l%ird Generation
Database System Manifest&. ‘lhe Hybrid Object-Relational
Amhitecture (HORA) is dedgned to

● support ANSI SQL Ill object-oriented functionality using
currently available relational databam eyatama

● provide good seIver performance to both relational ~
object applications

● provide full object storage suppmt by the RDBMS
● allow the specification of high-level deferential integrity

rules end uear-pcified constraints without SQL coding.
The HORA approach allows read-only access from existing
relational applications end is not designed for updates to
legacy systems without using the object manager.

Introduction

The two approaches moat often used to integrate object
applications with relational database man~ement systems
(RDBMS) am

● Direct connection of an object application to legacy
relational datastores without modification of the relational
schema.

● Connection of en object application to an object manager
which translates persistent objects into relational tables
eliminating the need for embedded SQL in the object
application.

The first approach has been widely used in recent years end ia
part of many vendors language products, class Iibnuies, and
object &tabase system. It often reqoims hmhviring SQL code
in the object client which negatively impacts flexibility and
performance. Recent detaikd data on a production system of
this type for an aerospace application showed that 35-55% of
the resomcea used to build en object-oriented application WC=
wasted on rework generated by changes to the relational
database schema during the development phase of the project.3

The second approach wa$ initially implemented in the
commercial object &tabaee product G-BAS~QL which allows
G-BASE &veiopars to store objects transparently in en Orack
object server.’ More recently, Hewlett Packard announced
OpenODB which provides a layer of object services for en
underlying RDBMS.S Both of these products allow objcct-

rmllkdalto mprwlltlamhsaapmtartbb~kweti
a14cc+0ale.wlmallOm&lmJlutau - ~~~=
acpydtbt~titi~~~~dh~~.d-b
*tbJtOlpyiOShby~ atb ~ tor~lddims~. To

WJ~W@~~*titiW~p~’

ACWSAC!’WWW%USA
@ 1993 ACM O-S9791-%b~.-$l~

oriented programmers to build new object applications
independent of many of the limitations of the un&rlying
RDBMS.

In mmy environments, available object/Hational databem
products may not be suitable. For those caees, this papar
deacribas how to build object emwicee from the bottom Up that
will allow pareiatant object storage in en RDBMS for new
applicatiotm. Since the object senices must manage the
schema of the relational databaee, legacy relational
applications may read the objects directly, but may not update
the database without using the object manager.

. . .

~lt~~$o~:?~~E~L.*?= ‘~;bt
inherent in the emerging specit5catiort of ISO/ANSI SQL III
scheduled for release in 1996.9 At that time all compliant
relational htabaae IYstems will become object-otiented.

The remainder of this papar epacifies the ~ for h
Hybrid Objact/Relational Architecture (HORA) ●pproach.
Detaik of implementation of objects in lelatienai tables in the
RDBMS are carefully explained Functionality that must be
_~bY~~Ma~Wu*ti*bak&~
at a high level. Details of the Object Manager deeign are
beyond the scope of this aficle. An Object SQL end C++
syntax are used to illustrate a simple example.

Hybrid Obect.Relational Architecture
The benefits of HORA are power, perfonnence, and safety.
There era many nievc approaches to ntoring objectg in a
relational databww. Rumbaugb10providesa good overviewof
strategies for storing chases in relational tables. Tbis paper
presents new experience in building sptems with all the power
of a true object database, witbin the inherent limitations of
RDBMS perofmmnce. ‘Ibe power of HOW ia that it is based on
over a decade of object &tabase reeearch end product
implementation] 1. ‘Ilte performance of HORA has been
optimized due to repeated implementation in dimributed
enterprise environments over many year8. Safety is baaed on
experience which guarantees that HOW will work well in
commercial environments.

HORA provides the foUowing Mtw
.

.

.

.

A rich object Mete-model can be stored directly in the
RDBMS. ‘Iliis Mets-model information is much closer to
ANSI SQL III object-dented capabilities then the limited
constraint definition and stored procedure capabilities of
ANSI SQL IL

Distributed client applications can locally ran the object
manager that performs dynamic mapping from objects to
relational tableg while enforcing user-dafirted integrity
constraints. This allows “atomic” changes fkom one valid
object state to another.

Object applications can be insulated from RDBMS schema
changes through minor modifications of the Mets-model.

These distributed capabilities offload the RDBMS and
improve relational server performance beyond server baeed
SQL Ill implementations. Fkaformancc has bean shown to
be as efficientM typical relational applicatiotta.

326

HORA provides each clam with a tvdational table. The rccmds HORA will not provide the performance of a pure object
in the table will atom obj~ instances. Io moat caaes, this detabaec for complex ob~a becauae it will be coaatmined by
~ech W look like a normalized datebaae to a relational the performance of the underlying relational database. It in
application. However, since relational applications have no designed for addirtg new object applications to currently
notion of object identity (which is maintained by HORA), they available relational &tabaae systems which have become
may not be allowed to bypeas the object manager to update the standard technology in moat orgmhmions.
database.

I APPLICATION

I OBJECI’SQL

SERVER

RDBMS

Figure 1

Hybrid Obect-Relational Architecture
In a commercial transaction processing environment, the
client/setver amhitecture in Pigura 1 has been found useful.’
An object-oriented client application communicates with the
relational databeee through an object access layer using an
Object SQL (OSQL) diakct. The Object Manager translate,
OSQL requests into one or more standard SQL cc.nmands to
retrieve objects fiorn the relational database.

‘fba OSQL and Object Manager Iayem consist of class Iibnuiea
with store and retrieve methods. OSQL providos a clear
command atmcture and can be easily understood by SQL
programmer. ‘Ihe Object Manager can provi& a direct pass
_ of ANSI -M SQL cornmanda]2in order to provide
some support conventional applications. In this case it must
enfome Coddh Nonaubversion Rule13 for relational systems by
ensuring that standard relationrd statements do not bypass
object integrity constraints.

Object Identity in the RelationalDtttabaae
Inorder to redua the wnk required to build an object-oriented
application and retain the power of the object architecture,
HORA gives every object ● unique, system defined, object
identifier. 14 In a m.lational aystcm, objects are not guaranteed
unique identity because they have keys which may be changed
by a user. This creates a referential integrity problem which
has increased development costs by over SO% on pmjccts with
published hard data on resource udlization.3

Functionsof the Object Manager
For the ptupoaes of this paper, we assume the Object Manager
will be wtitten in C++. It will accept OSQL messages and return
C++ objects. The Object Manager must provide the following
functionality:
● crcete, update, delete metadatq classes, and instances

● auppott OSQL and stmdard SQL queries

● enforce meterules

The Object Manager stores metadata in the database, is
semmtically complete, and has a full understanding of

327

relationships between data. In contraat, a typical relational
database stores only a portion of the schema in the databaaa
The ability to maintain and evolve ayatema which store a
complete set of metadata is enhanced over conventional
systems. When an original developer moves on to other work,
all the knowledge about the databme doe- not deput with the
person. Much of it remains in the database as a Mets-model,
class schema, and metaruks embodied in methods and the
inheritance structure.

Building the HORA Mets-Model
‘l%e HORA Mets-model is created by building en entity-
relation&ip semantic databaee model. Tim eemantic model can
be used to build an object template supporting methods and
inheritance. Once the object template i- in place. application
classes can be created. The class schema can then be wed as a
template to populate the database with instances. Meteclasscs,
application classes, and clasg instanceg am all objects in the
databaae. ‘Iltin recursive design enables powerful features not
available in persistent object stores built without a semantic
data model (dynamic schema evolution, for example).’s

‘llte Mets-model has been designed to be easily extensible to
support distributed servers, versioning, and triggers. Space
limitations make these topics beyond the seep of this paper.

The HOiCA Sem8atlc Databoae Model

HOW is baaed on a semantic databae model. Hull end King16
provide a thorough review of the historical &velopment of
semantic models along with an extensive bibliography. All
HORA objects are members of a class and all clasaes arc
constructed only from atomic attributes and relatkmhipa. This
semantic data model is baaed on the work of Abrial’7 and
directly supports the Entity Relationship Model of Chen.l 8

Atomic attributes can consist of any data type auppotted by the
SQL Server or any data type which the Object Manager can
suppofi by using an algorithm to store data in the RDBMs.
Strategies am available for storing Binary Large Objects
(BLOBS) even in m RDBMS which does not directly support
them. me term tibute will be ueed hereafter to mean atomic

Figure 2 - HORA Object Mets-Model schema

—E Many to One Relationship

~ Many to Many Relationship

Attribute

...
I 3016 I Method ID

I 31]1 I Table Name
..

3111 [Class Narrse
.

30~ 1 ! Class ID

~ K

8 ,-a

Amibute 7ti

Type ID Class ID Attribute Name 6 _Me
5R

Class Class ID IClass Name I Table Name

... /\
8 is–au rcasaof

1

YP

{;’’~”Y

n
27 I ddSMS n n

261tinesfd~WPa0 n
25 _@inea relation origin n

24 5 on w“ n
23 nes atructum Ities of In

[22]isirwolvedin n
_js & of

Relationship l-z<~w~
n

n Method
Type

Re+itI~l&Ip Re&donship 5uccessor
Cardina~ Usage

Class
Relationship

R~ation#p Pmdu~ 51KlK?sa#
YPe

2!l .- J 3 I 2
21 1 1 I 2

I 22 1 4
23 I 4 1

1. 24 1 6———. .

..-..r
—

\

‘\,, ..
.,,, .
\.,.,

\.,,
..

u
Method Method ID e &g&

1501 Dal* Rd5d05-15hPWeli 1
Add Attribute 1

~521_@s* @po 11
...1 25 I 4 I 8

?!?.- J_ -! 4
27 7“ 1 “-6

L_2&_-l__!_ _. I :...

Object Rs$ii~l# pmfjecessor5uccessor Predecessor 5uccessor Prerkcessor Successor

Relationship Yw Class ID Class ID Actual C!aSS ID Actual Class ID Ob@ct ID W&t ID

The enthusiastic reader is encouraged to further populate the tables and complete
the meta-model definition as an academic exercise.

328

attribute. Bach class will have a single table which stems all
Utributea.

HORA links objects through the use of object identilers in m
Object Relationship Table (see Figutes 2 and 4). Referential
integrity is maintained by the Object Mmager through
enforcement of one simple xule. No object can be deleted until
all its lirth to other objects are deleted from the Object
Relationship Table.

TIM HORA ObJect Template

Reduced kStIUCtiOn object semS41tiCS CStl & used to construct
an objed template by creating the foUowing eight metadata
tables (s0s Figure 2).
●

●

●

●

●

9

●

●

Class Table

Attribute Table
Attribute Type Table

Clam Relationship Table

Relationship Type Table

Method Usage Table

Method Table

Object Relationship Table
Note that the notion of auperclam is defined as a relationship
type in Figure 2. Reuae is supported through this
implementation of multiple inheritance.

The EOllA Metaclasa

When the Object Manager receives a request to open a new
database, it open a database in the RDBMS and constmcts the
eight tables shown in Figure 2. Initially, there are no data in
the rows of these tablea. ‘lhe Class Tabk is first populated with
eight objects which represent the eight metatables (objects 1-
8). In the Figures, object JDs are specified so as to aid
understanding.

Attribute types are created in the Atdibute Type Table (objects
30-34). Before the C%jwt Manager can instantiate the HORA
Metacless, the “defines type of”, “is made of’, md “is
Superclass of” relationship types am needed. TlteSa ale cleated
in the relationship type table (objects 20, 21, 28).

‘llw HORA Metaclass (the class named “Class”) is made up of
attributes and relationships by creating objects 21 and 22 in
the Clam Relationship table. Relationship 20 in the same
table indicates that Attributes Types are telated to Athibute
Usage. The Object Manager must consttain Attribute Usage

, 4

names to be unique to avoid name ambiguity in multiple
inheritance ~lcations. Attribute Types, however, may be
reused by the Object Manager.

‘Ilie notion of superclasses is added by defining the Metaclass
as a supemlass of itself by adding relationship type 28 to the
Class Relationship Table. The Object Manager mppotts
standard specialization inheritance, i.e. subclasses conskt of
all attributes, mktionships, and methods of all superclasses
plus one or more additional attributes, relationships, or
methods. Methods are added by putting relationdtip type 24,
“is operated on with”, in the ClasO Relationship Table.
Methods for creating, updating, and deleting metadata can be
added to the methods table. Polymorphism ia supported by
allowing a subclass to respecify a method previously defti in
a superckes. In order to avoid ambiguity when searching the
netwodr of classes for methods, a Usage sequence Number is
defined in the Method Usage Table. Whtm a message is sent to
a class, if the method is not available in the class, the seamh
for the method proceeds to superclasses. If multiple
supetvlasses have the same method define~ the one with the
lowest Usage Sequcace Number is sekcted.

Instantiation of the HORA Metaclaas bootstrapthesystem.
The Object Manager can now dynamically determine the
method of construction of all clames in the RDBMS by reading
the metatables. With the instantiation of the a~optiate
methods, the Object Manager has the took to easily change the
Mets-model to support evolving standards such as those of the
Object Management Group (OMG).19~21 For example, a new
Mets-model with additional features can be created by making it
a subclass of the original Mete-model.

HORA Approach to Methods
From a theoretical standpoint, it is desirable to store method
code in the database. In prectice, distributed clients running in
different languages on different platforms make thin difficult.
Ako passing methods over the network can cause performance
problems.

A workable solution is to store method names and version
numbers in the database. When a client application connects
to the database, it will read the metadeta including method
version information. The clicmt software can then positively
verify that the appropriate method versions have been
previously linked into client code, prior to allowing a user to
run the application. Method code under this scenario resides on
application client workstations and not on the semer.

b 4

cLrENT ● ACCOUNT

K

SAVINGS CHECKING
ACCOUNT 0verdr8ft ACCOUNT

Link

Figule 3

329

Figure 4 - Bank Accounts Class Schema

—> Many to One Rekionehip

~ Many to Many Relationship

...
I 43 I I k

[42 !=tf?udw I h*-”-
41 event tie [_~_.

Aitriht Its I 40 I balance

-zr-

...

Attribute

I 43 I 11 l=f@P h tie
[30 I 10 I OID

I 42 I1OI
I 41 10 I acct

1 40 ! 10 I Xcou m balance

~% Class ID Attribute Name

131iie0WedbY In
13010VeftWtlhlk In

Relationship
Type Usage

Class
Relationship

..

\
R+ionld$ Pm&e&r Wc&su&

YPe
28 I 10 I 11

1 28 I 10 I 12
29 1 13 10

1 30 12 11
31 13 10

Object
Relationship

\ .\

Method

I 1 63 1 10
i

I 1
u I lfl 1

I 66 1 12 1 1
&7 I 11 I 1

1 “r .,

...
\

Rt+tii;;p P&eSSOI successor Predeceswr Successor Predecessor Successor
YPe Cless ID Class ID Actual class ID Actual Class ID Object ID Object ID

I 29 13 10 13 10 I 800 I 1000

I 29 13 10 13 10 801 1001
29 13 10 13 10 1002

29 13 10 13 10 I 801 I 1002
29 I 13 10 13 12 aoo 1003

29 13 10 13 12 I 801 I 1003
30 ‘ 12 13 12 13 1003 1002
...

330

Figure 5 - Bank Account Instances

Savings

Account ~OID I Acct Number I ~ I Balance

Checking OID Acct Number -~ Balance
1003

_——
218952 I olml/92 I 5ooO0 I–s0

...

OID Acct Number V Balance Iyse ““.,,
I 1000 500258 1 10/10/64 I 270000 .06

11001 1 528112 05/1 9/63 280000 f .06
[1002] 422186 04/11/91 190000 .06

.............

.--.............-

Ch&ing

,-...-.-...., ...
““-.....

“--......
.--...

......
------ ...

-.-...

......
.........

Object
.......

RCI+AWIS#Jf%&cmr Successor predecessor ‘~ successor Preckces50r *cessor

Relationship I , *29 ,! ,3 ~ 110 , \J , ,0 ~ ~ , ,CiassID CkSSID AC(lJai C@ ID ActualClass ID object 10 ,* ID

29 I 13 1 10 I 13 I 10 I 801 I 1001
I 29 13 10 13 10 1002

29 13 10 13 10 I 801 I 1002
29 13 10 13 12 600 I 1003

29 13 10 13 I 12 801 1003
30 12 13 12 13 ?003 1002...-

.....-.
....-.-””-”,....---...

....--”
......

.....--”--”......
.....-

...---””.....-
.-----

........””-......

Clients

..----......-......

OID Last Name First Name ~~~1 SSN/SIN
800J Wk? I Lisa 1 B I 111222333

801 wise Andrew I C I 111234555

331

Banh Accounts - A Simpk Exsmple of the
HORA in Action

Consider the object diagram in Rgum 3 @unbaugh notation).

The example consi6t6 of two object type6, Cfient6 and
Accounts. Account will be used as a 6upemla6s of Saving6
Account and Checking Account. Clients will Owl) accounts and
Checking Accounts will be related to Savings Accounts
through an Overdraft Link. This will allow the system to
withdraw money from a Saving6 Account in the caae of a
Checking Account ovenhaft. Attributes of these object6 are as
6pecified below:

CLASS

CLASS

Cress

CLASS

CMmnt
(Laat_Nama, Firat_Uama, t4iddlo_Initial,
SSN-SIN,

RELATIONSHIPS (owns Account))

Account
(Account_thamber, Openod_Dato, Salanca,
MSTSODS (open, C1OSO, DaPosit , withdraw,

Traamfor))

savil)gm_Account
(lntoroat_Rato,
SUPZRCLASS~S (Account) ,
MSTBODS (Poat_Interoat))

Checking Account
(Chack-ing-he ,

RSLATIONSEIPS (Overdrdt_Link
Saving*_Account) ,

SUP6RCLASSIM (Account) ,
MSTSODS (Withdraw, Post_Foo))

This simple example illustrates the power of object
technology. ‘The clasa CHECKING A~UNI’ has a Withdraw
method that overri&s the method of the 6ame name in the
6upercha6 ACCOUNT. ‘fhis method may be written to tranefer
money from a 6aving* account in the eventofovardratlmdng
the Overdraft_Link relationship. The Transfer method in
ACCOUNT may U* Withdraw (from itself) and Deposit (to
another account).

Con6ider a tran6fer fmm a checking account to another account.
CHECKING ACCOUNT does not have a Transfer metho4 so the
Transfer method of superclas6 ACCOUNT is executed. This
sends a Withdraw memage to the checking account. If the
checking account ha6 insufficient funds, the Withdraw method
sends a Transfer mesmge to the attached savings account, and
so forth. A complex serie6 of events will occur automatically
using only ACCOUNT Withdraw, Deposit, and Transfer
methods and the modified Withdraw method in CHECKING
ACXXXJIW.

Development and maintenance of the code for theee account
tran6action6 is significantly reduced through reuse of methods
and through the built in thread of execution of these methods

“suppmted by inheritance. h a red banking 6y6tem, it ~ be
neces6ary to con6ider security, tramaction log6 and other
factom. Reduction in code required will be much greater than in
this 6imple example.

Opening A Datsbsse
To open a new application database, the application must send
the Object hkiager an OSQL command to create a databue. ‘lYw
Object Manager will xsspond by opening a databaec on the SQL
server and creating the metadata tables described previously.

Using a propoeed OSQL standard which will eventually be
supemededby ANSI SQLllI_tha caLlwouldkmklikeaa
foIJows with the application coda *g the databue sane
andmode ofoperatien (mad&dta).’b~ _&UM6

a cur60r and comection ~ for UIW in the next Cti to the
database.
Objoct_Managor: : open (cursor, cenn_ID, databaso,

-) t

Creating The Clsas &hems
Once the metatablea are created, the application must send
OSQL commamb to create the claw schema.

Objcct-Nanag~r: tosql (cursor, OSQL_atat~t,
langth, conn_ID) ;

where,

OSQL_etatament= CRSATE CWS Accouat
(&couat_Humbar intagar 12 2NDSX

RSQUIRSD,
Openad_Dat* date.
Salance nonoy 15.2,
BMTEODS (~ 1, Cloeo 1, Dqmsit 1,

withdraw 1, Transfer 1))

OSQL_at at-nt- CREATS CWS Client
(Laat_t?am string 30 2UDtX rmuxm,

?iret_Wama ●tri.nq 30,
tU.iddlo_Initid string 1, SM_SXN integer

9,
RSIATIOMSEIPS (Owns Account))

OSQL_at atunant - CREATS CLASS Swbga_Aecount
(Intorost_Rato 4.2,

METSODS (Po8t_Int@r@at 1),
SUPERC WSBS (Account))

OSQL-etatamant - CSEATS CLASS

Checking_Account (Checking_Fee 6.2,
lUtLATIOIWHIPS (Ovordraft_IAnk

Saving#_Account) ,
WWTHODS(Poet_Fae 1, Withdraw 1),
SUPERCWSMl (Account))

Upon receipt of these comman&, the Object Manager will set
up the claw schema in Rgura 4 and generate the object tablea
Of ~~ 5 WithOUtiIlSt@llCe6. All that remain6 i6 to imtmct
the Object Manager to create the instances.

Cresting Instances

To enter the fimt account,

0Sf2L_at atemant - CREATE OSJSCT OP CLASS
Saving#_Account (Account_Numbar 500258,
Opened-Dato 10-10-64, Balanca 2200.00,
Intorsst_Rata O. 06)

A cursor will be returned with Account-OID, a pointer to the
object ju6t created, ‘IM8 i6 wed to connect a Client in6tance to
the Savinga Account instance.

OSQL_et ateumnt - CRJ$ATSOBJSCT OF CIAS6 Client
(La#t_Neum “Niso”, First_Wma “Lisa”,

14iddlo_Initial “T”, SSl_SIN 111222333,
RELATIONSHIPS (Owne 1000, 1002, 1003))

332

The creation of the remaining instances in Figure 5 pmcecda in
a similar fashion. Clasaes and instances can be modified and
ddeted with similar OSQL COUUnMde,

Optimizing the Database for Performance
When building a database application and bringing it into
production, it is eometirnes necessary to improve performance
of the system by denomnalir.ing the database. This invaluably
reduces the flexibility of the system end generates additional
maintenance overhead in a conventional relational
application. In the object-oriented environment, it can also
&etroy the integrity of the object Sylnem.

There is one extension to the object system which may
improve performance for some applications. For one to many
dationahipc, a foreign key OID may be inserted aa an attribute
in the instance tables. This will allow relational joins to be
accomplished without going through the Object Relationship
Table. ‘he Object Relationship Table must @ill be maintained
to enable raverae pointers which support referential integrity.
‘his process can be automated through proper design of the
Object Manager.

In our example above, this would reauk in an addition column
in the Checking Account table which would contain the OID’S
of the related Savings Account. Thio would yield performance
gains on traswactions that require simultaneous access to both
checking and savings accounts. For more complex object
hierarchies, imp sovernents could be aignificmt.

conclusion
The HORA methodology for connecting new object-oriented
applications to relational dataetore~ has been described. It
supports full object-oriented functionality while allowing
traditional applications read access to the Atabase and is eaaily
extensible to distributed RDBMS servers and versioned
databases. ‘Ilte object schem~ including the Mets-mode~ can
dynamically evolve to mppmt complex object stmcturea and
emerging ISO, ANS~ and OMG object standards.

Blbllogrsphy

1

2

3

4

5

6

7

8

Atkinson. M. et aL The Object-Oriented Databaae
Systems Manifesto. In Deductive and Object-Oriented
Databases. Blaevier Science Pubiiahen, 1990.
Committee for Advanced DBMS Pumtkm (Stonebraker,
M., et al.). Third Generation Database System
Manifesto. ACM SIGMOD Record, Sep 1990.
Gardner, J., Sutherlm& J.V. Report on Buyer Furnished
Equipment Development History and Lael of Effort.
Object Databaaea, Cambridge, Mare., November, 1990.
G-BASEISQL Product Brief. Object Databases,
Cambridge, 1990.
Lyngback, Peter. OSQL: A I&nguage for Object
Databases. Hewlett Packard Technical Report HPL-IYTD-
91-4, Jan 15, 1991.
Sutherhn~ J.V. Graphael-Boeing Working Paper:
Boeing Aerospace APF Project. Graplwl, Inc., Waltham,
1989.
Rymer, J.It. GtrirMss P.A.’I Buyer Purniahed Bquipment:
An Objact-Memted Application Caae Study. First Class:
The Object Management Group Newsletter, Nov/Dec
1991, pp. 20-21.
Rymer, J.R. Object Orientation 1991: Toward
Commercial Reality. Patricia Seybold’s Office
Computing Group Special Research Report, 1991, pp.
280-286.

9

10

11

12

13

14

15

16

17

18

19

20

21

Melton, Jim. (ISO/ANSI) Working Draft Database
Language SQL (SQL3). ANSI X3H2-92-155 DBL CNB-
()()3, Jtdy 1992.
Rumbaugh, J. et al. Object Oriented Modeling and
Design. Prentice Hall, E@ewood Cliffs, 1991.
Bathes, John-Paul A., Vaysaade, M., Znamierovaka, M.
Property Driven Databaaes. In Proceedings of 6ih IJCAI,
Tokyo. AAAI, 1979.
Date, C.J. A Guide to the SQL Standard, Second Edition.
Addison-Wesley, Reading, Mare., 1989.
Codd, E. F. The Relational Modei for Database
Management, Version 2. Reading: Addison-Wedey,
1990.
Khoshafhm, Setrag N., Copaland, George P. Object
Identity. In Readings In Object-Oriented Database
Systems. Zdonik, S. B., Maier, D. (Bda.) San Metao,
Morgan Kaufmenn, 1990.
Sutherland, J.V. Ia a Perni~ent Object Store a Databme?
in 00PSLA ’89 Proceedings, New Orieam, October 1-6.
ACM, New Yo& 1989, pp. 499--500.
Hull, Richard, King, Roger. Semantic Database
Modeling: Survey, Applicatiorm, and Research Issues.
ACM Computing Surveys 19:3:201-260.
Abrial, J.R. Data Semantics. In Data Base Managemen~.
Klirnbie JW, Koffetnan KL (Eda.) North-Holland, 1974,
pp. 1-59.
Chen, P.P. ‘l’he Entity-Relaticnmhip Model--Toward a
Unified View of Data. In Readings in Database Systems.
Stonebraker, M. (Ed) Morgan Kaufmenn, San Mateo,
1988, pp. 374-387.
Osher, H.M. Software Without Walls. BYTE 17:3 (Mar),
1992, pp. 122-128.
Object Model Teak Force (OM’IF). The OMG Objecl
Mo&L Pramingham: Object Management Group (OMG),
draft 1 Mar 1992.
Digital Bquipment Corp. et al. The Common Object
Request Broker. Pramin~: Object Management Group
(OMG), 1992.

333

