
 
 
 
 
 

A History of Object-
Oriented Programming 
Languages and their 
Impact on Program 

Design and Software 
Development 

 
 
 
 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 1

A program is simply a sequence of commands instructing a 
computer what to do. The degrees of freedom available in devising this 
list, make programs  potentially the most complex and intricate entities 
ever envisioned by humans. For this reason, it is imperative that they are 
subdivided, otherwise they would soon become unmanageable and 
incomprehensible. It is essentially the different ways in which this can be 
accomplished which has engendered the development of programming 
design methods and subsequently languages which facilitate their 
implementation. 

Early languages could be categorised as procedural and applicative. 
The former predominantly embody a series of instructions to assign 
values to variables, while the latter resemble mathematical function 
definitions and ideally have no statements, only expressions without side 
effects (Parker 1988). During the 1960s, a new discipline, object-
orientation emerged. Although the first language of this type originated 
towards the end of the 1960s, it is only in the last decade that its 
employment has become widespread because of the benefits it confers 
over existing methods. As the requirement for systems becomes ever 
more prodigious and elaborate, it is perceived as a means by which greater 
reliability and easier maintenance can be achieved. 
 In order to understand the advantages stipulated by the inventors of 
object-oriented languages, it is important to appreciate the conceptual 
distinctions between these and traditional imperative programming 
languages. In the latter, a software schema may be data or process driven, 
with functions and variables attributed different levels of importance. 
Rather than considering procedures and data as being separate, object-
orientation unifies them into an ensemble called an object. An object’s 
state is a function of its data or instance variables, which can only be 
accessed by sending a message asking the object, an operation which 
entails calling its functions known as methods or member functions 
(Lafore 1991). This occasions the notion of an object possessing 
behaviour, with messages sent to it causing a modification of that 
behaviour. The enclosure and protection of data is called encapsulation 
and results in the state of an object being hidden from procedures external 
to it. The importance of this in planning a program cannot be 
underestimated. It encourages a delegation of behaviour to objects, whilst 
hindering the cross-coupling of the internals of an object with other areas 
of the system (Computer Applied Technology 1993). This should 
diminish the probability of a rogue program being capable of altering data, 
since it should be concealed from all but the pertaining object. 
Additionally, when modelling a real world item, it is more natural to 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 2

imagine it in terms of an object than a function, which assists the design 
process. 
 In essence, object-orientation is a form of organisation and can be 
performed to some degree with any programming language. However, in 
order to exploit the full potential of this methodology, several languages 
have been conceived specifically for this purpose. 
 The first of these was Simula. Although it never became widely 
used, it was the archetype of the concepts of object-oriented 
programming and has been highly influential on its successors. Its 
designers were Ole-Johan Dahl and Kristen Nygaard, who worked at the 
Norwegian Computing Centre in Oslo. What they had originally envisaged 
in 1962 was a simple simulation procedure package along with a pre-
processor for ALGOL 60, the foremost programming language in Europe 
at that time. Their endeavours culminated in a prototype Simula I compiler 
running on a UNIVAC 1107 mainframe in 1964. To create an all-purpose, 
standalone language, the designers wanted to generalise and consolidate 
the concepts they had formulated and when Tony Hoare imparted his idea 
of a record class construct in ALGOL bulletin no. 21, 1965, they realised 
they needed some kind of object with record class properties. When 
prefixing was introduced in 1966, they had what they were after: an object 
consisting of a prefix layer and a main layer, the former containing  
references to its predecessor and successor  and the latter 
accommodating its attributes. Combined with the exploration of string 
handling and input/output for the language by Bjoern Myhrhaug and the 
concept of classes, Simula 67, later renamed Simula was born. Work 
began on the production of compilers for an assortment of mainframes, 
including IBM, UNIVAC, CDC and DEC machines (Holmevik 1995). 
 Nygaard’s language development did not cease, his efforts being 
devoted to the systems description language Delta completed in 1975 and 
to the refinement of the related notions of classes, records, types and 
procedures into a higher-level abstraction mechanism, the pattern, 
incorporated in the language, Beta (Knudsen 1997). 
 One of the languages that embraced the concepts of class and 
message of Simula, was Smalltalk. A project commenced at Xerox PARC 
in the early 70s with the aim of creating the quintessential dynamic object-
oriented language. This is one which allows new classes, objects and 
behaviour to be appended on the fly by representing the class hierarchy, 
objects and methods of a program as meta-data at run-time. Early versions 
appeared biannually between 1972 and 1978, but unfortunately, the 
language was not standardised hence there are a number of commercial 
dialects in existence today (Latta 1995). This is not a problem with Eiffel 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 3

which was produced with similar aims by Bertrand Meyer in 1985 to 
increase productivity and software quality (Arnaud 1998). 
 Object-orientation could only take off if programmers could be 
weaned on to it by evolving a new language from an existing one, so that 
old source code would not have to be rewritten and so the new techniques 
could be progressively mastered. Arguably the most successful of these is 
C++. C had been invented by Dennis Ritchie of Bell Laboratories in 1972 
and it had become the prevalent language of its time partly due to its 
translation into efficient machine code, its portability and versatility, but 
principally because it underpins the UNIX operating system. C++, which 
was credited to Bjarne Stroustrup of AT&T Bell Laboratories Computing 
Science Research Centre in 1983, has few incompatibilities with C, 
permitting gradual familiarisation with the procedural improvements and 
features to support data abstraction and the object model (Holmes 1992). 
It was not the only undertaking to extend C, another example being 
Objective-C by Brad Cox in 1984, but it has become far more popular 
amongst programmers (Schoenmakers 1998). To retain compatibility with 
C, there are compromises which make it a retrograde step from Smalltalk. 
For example, by implementing static object-orientation, any change in a 
class necessitates total recompilation and its lack of garbage collection can 
generate severe memory management problems. 
 Other languages have been expanded to encompass object-
orientation. Microsoft have made their own version of BASIC called 
Visual BASIC and Borland, with their successful Turbo Pascal 
environment have been expeditious in introducing the methodology to their 
product and have also released their own visual tool, Delphi (Kinnersley 
1998, Andersson 1997). While these languages tie programmers to one 
operating system, others have been standardised to institute greater cross-
platform availability. As successors to Modula 2, in the late 80s, DEC and 
Olivetti designed Modula 3 and Wirth and Gutknecht, Oberon, now 
renamed Component Pascal (Harbison 1992, Oberon Microsystems 
1997). Meanwhile, a recommendation for an object-oriented version of 
Ada, eventually to be Ada 95, was composed by  the Ada Board, a 
Federal advisory committee to the Ada Joint Project Office set up by the 
US Department of Defence (Guerby 1996). The architects of Smalltalk 
strived to overcome its shortcomings and their research centred on 
supplementing  Lisp with the Common Lisp Object System, through 
Flavors (Franz Incorporated 1998). Not even the venerable COBOL is 
being ignored. Commercial object-oriented variants already exist, such as 
Micro Focus Object COBOL, although standardisation efforts by ANSI 
(J4) and ISO (WG4) groups have not yet finished (Klein 1998). 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 4

 The revolution in methodology has not been avoided by the 
scripting languages1, with Perl and REXX being upgraded, the latter 
undergoing a name change to Object REXX (Christiansen 1996, 
Cowlishaw 1997). Python is an example of a new scripting language, the 
origin of its syntax and semantics being Modula 3 (Rossum 1998). 
 A list of object-oriented languages in existence or under 
development is given in Appendix A, but this examination of their history 
would not be complete without reference to Java. Delivered by Sun 
Microsystems in 1995, its original objective was to let devices, peripherals 
and appliances possess a common programming interface. However, the 
tremendous upsurge in browsing the Internet enabled its machine 
independence to be utilised in facilitating far more functionality to be 
offered by web sites through Java applets. A Java compiler outputs a 
pseudo-code which must be executed on any computer having an 
appropriate interpreter known as a Java virtual machine. With a similar 
syntax and many improvements to C++, like garbage collection, its 
deployment has been extremely rapid (Harold 1998). A recent survey 
reveals that over 40% of US businesses asked are already using it and 
over 30% intend to soon (Andrews 1998). 
 All these languages possess certain distinguishing characteristics: 
classes, inheritance, polymorphism and ease of modification. 
 A class is a definition of the type of an object. In procedural 
languages, the type may be an elementary data type, such as an integer or 
a collection of basic types within some sort of record or structure, for 
example a ‘struct’ in C. The fundamental difference between  these and 
classes are that the latter define functions as well as data types. This has 
the advantage that the behaviour is not hardwired and classes can be 
developed as abstractions from particular problems, allowing expression 
of not just the data to be manipulated, but the methods that will operate on 
that data. 
 Enlarging the concept of class is inheritance. When declaring a new 
class, it can be derived  from one or more base or parent classes. When 
an object of the child class is instantiated, its behaviour depends upon the 
members and instance variables of the child and parent classes. It can 
respond in the same way to the same stimuli as objects of the parent class 
and regulating its behaviour involves altering only the base class 
(Computer Applied Technology 1993). By inheriting the capabilities of the 
parent class, functions can be reused and the connection between 
elements of an object-oriented program is made manifest. 

                                                                 
1 Scripting language: interpreted high-level language generally used for system administration and text manipulation 
tasks within operating systems. A DOS batch file is an example of a script. 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 5

 Stemming from inheritance is polymorphism. Several functions can 
be declared with the same name, but they must have some other 
identifying trait. This could be the function type or the number of or data 
types of input parameters. This requires dynamic binding, in which the 
correct method to execute must be determined at run-time. Operators  like 
‘+’ and ‘=’ may also be polymorphic, in which case they are said to be 
overloaded, but this is contingent upon the language (Lafore, 1991). The 
member functions of a base class may be overridden in a derived class, 
by duplicating the parent’s declaration in the child. Thus, objects of the 
two classes may both react to the same messages, but can do so in 
distinct manners. 
 One of the goals of object-oriented languages is flexible programs. 
A minor shift in requirement of a program should not demand an entire 
rewrite and if other programs share any  of its features, adaptation of the 
relevant sections could save time and money. The data dependencies 
inherent in procedural programs present a formidable obstacle to this goal, 
but one which has been largely surmounted by the localisation of change 
made possible by encapsulation, provided discipline is imposed on the 
design of classes. Future software production can be expedited by the  
construction of libraries of classes, the division of programs into objects 
making this task relatively straightforward. 
 The development of languages has not abated and there are those 
who are working on progressing beyond object-orientation. Research 
teams are investigating blending object-oriented and functional concepts to 
create new programming languages. Another idea, as illustrated by the 
language Beta, is to abstract further to a basic construct from which 
classes, types, procedures and records are composed (Knudsen 1997). 
 A new object model under research at the University of Twente in 
the Netherlands is the composition filters object model which amongst 
other benefits, enables dynamic inheritance and delegation, reflection on 
the interaction between, and the abstraction of communications among 
objects (Koopmans 1996). 
 It is to be hoped that these advancements will complement the 
improvements in development, maintenance and reusability of software 
inaugurated by object-orientation and the languages which conform to the 
objectives of this methodology. 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 6

Appendix A 

List of some of the Object-Oriented Programming 
Languages in Existence Today 

 

1.  A# 

2.  ABCL 

3.  Abel 

4.  Actor 

5.  Acttalk 

6.  Ada 

7.  ADES 

8.  ADVSYS 

9.  Agora 

10.  Alcool-90 

11.  ALLOY 

12.  ALTRAN 

13.  AppleScript 

14.  ASDL 

15.  A’UM 

16.  BeBOP 

17.  Beta 

18.  BLAZE 2 

19.  Blue 

20.  Bob 

21.  BOPL 

22.  C* 

23.  C++ 

24.  C+@ 

25.  Cantor 

26.  Cecil 

27.  CESP 

28.  CHARM++ 

29.  CIEL 

30.  Classic-Ada 

31.  Click-n 

32.  CLIPS 

33.  CLIX 

34.  Clu 

35.  Cluster-86 

36.  Common Lisp 
Object System 
(CLOS) 

37.  CommonLoops 

38.  Common Objects  

39.  Concurrent 
Aggregates (CA) 

40.  Concurrent 
Smalltalk 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 7

41.  ConstraintLisp 

42.  cooC 

43.  COOL 

44.  CSSA  

45.  Denali 

46.  DinnerBell 

47.  DOWL 

48.  DRAGOON 

49.  DROOL 

50.  Dylan 

51.  Echidna 

52.  Eden 

53.  Eiffel 

54.  Ellie 

55.  ELLIS 

56.  ELSIE 

57.  Emerald  

58.  EMPL 

59.  ETHER 

60.  EXTRA 

61.  FLEX  

62.  FMPL  

63.  FOOP 

64.  Formes 

65.  Fresco 

66.  G 

67.  GEL 

68.  HERAKLIT 

69.  HOOK 

70.  Hybrid  

71.  IDOL 

72.  InnovAda 

73.  ISLisp 

74.  Jade 

75.  Java 

76.  Kaleidoscope 

77.  Kevo 

78.  LAMINA  

79.  Late-bound 
Encapsulated 
Name Spaces 
(LENS) 

80.  LAURE 

81.  Leda 

82.  LIFE 

83.  LITHE 

84.  LOGLAN 

85.  LOOKS 

86.  LOOPN  

87.  LOOPS 

88.  Lore 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 8

89.  LUKKO 

90.  MACE 

91.  MCS 

92.  MELD 

93.  MeldC 

94.  Mentat 

95.  MEROON 

96.  Mode 

97.  MODSIM II 

98.  Modula-3 

99.  MooZ 

100.  Neon 

101.  Newton 

102.  Oaklisp 

103.  Oberon-2 

104.  Objective-C 

105.  Object-CHILL 

106.  Object Lisp 

107.  ObjectLOGO 

108.  Object Oberon 

109.  Object-Oriented 
COBOL 

110.  Object-Oriented 
Fortran 

111.  Object-Oriented 
Turing  

112.  Object Pascal 

113.  Object REXX 

114.  ObjectTCL 

115.  ObjVlisp 

116.  Oblique 

117.  Oblog 

118.  Omega 

119.  Ondine 

120.  Ontic  

121.  Orca 

122.  Orient84/K  

123.  OSCAR 

124.  O'small 

125.  Oz 

126.  Parasol 

127.  Parlog++ 

128.  Pascal Plus 

129.  PECOS 

130.  PHOCUS 

131.  Pict 

132.  Polka 

133.  POLYGOTH  

134.  POOL2  

135.  POP++ 

136.  PopTalk 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 9

137.  Probe 

138.  Prolog++ 

139.  PROOF/L  

140.  Python 

141.  Real-Time Mentat 

142.  ROME 

143.  Rossette 

144.  RTC++ 

145.  Sather 

146.  SCOOP 

147.  SCOOPS 

148.  ScriptX 

149.  SDL-92 

150.  Self 

151.  Sina 

152.  Siri  

153.  SmallWorld  

154.  SNOOPS 

155.  Solve 

156.  Spool 

157.  TAO 

158.  TELOS 

159.  Theta 

160.  Traits 

161.  Trellis  

162.  Tuple Space 
Smalltalk 

163.  Turbo Pascal V.6 

164.  UC++ 

165.  United Functions 
and Objects (UFO) 

166.  USSA 

167.  VDM++ 

168.  Venari 

169.  XDL 

170.  XLISP 

171.  XScheme 

172.  yacc 

173.  Z++ 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 10

References 
 

Andersson, M. (1997, May 28) Delphi Frequently Asked Questions. 
<http://www.sbrain.syh.fi/delphi/delphi_faq_1.html> 

Andrews, D. (1998, March) “Survey Reveals Java Adoption Plans.” Byte 
Magazine. 23(3). pp.26,30. 

Arnaud, F. (1998, March 12) Eiffel Frequently Asked Questions. 
<http://sunsite.doc.ic.ac.uk/usenet/usenet-by-
hierarchy/comp/lang/eiffel/comp.lang.eiffel_Frequently_Asked_Questions
_(FAQ)>  

Austern, M. What is Java? (1997, November 19) 
<http://reality.sgi.com/employees/austern/java.html> 

Christiansen, T. (1996) What is Perl5? 
<http://language.perl.com/info/perl5-brief.html> 

Computer Applied Technology (1993) What is object-oriented design? 
Computer Applied Technology CBT. 

Cowlishaw, M. (1997, July 30) Where do we stand today? 
<http://www2.hursley.ibm.com/orexx/section2.htm> 

Davis, R. (1997, June 20) The Object-Oriented Page. 
<http://www.well.com/user/ritchie/ritchie.html> 

Encyclopaedia Britannica, Inc. (1997) Computer Science: Programming 
Languages. Britannica CD. Version 97.  

Encyclopaedia Britannica, Inc. (1997) Computers: Programming 
Languages. Britannica CD. Version 97.  

Franz Incorporated. (1998, March 4) Enabling Applications that Adapt 
to Changing Needs. <http://www.franz.com/tech/wp.html> 

Guerby, L. (1996, July 16) Evolution of Ada95. 
<http://www.adahome.com/LRM/9X/Rationale/rat95html/rat95-p1-1.html> 

Harbison, S.P. (1992) Modula-3. Prentice Hall.  



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 11

Harold, E.R. (1998, March) Java Frequently Asked Questions. 
<http://sunsite.doc.ic.ac.uk/usenet/usenet-by-
hierarchy/comp/lang/java/programmer/comp.lang.java_FAQ 28>  

Hathaway, R.J. (1998, February 3) Object-Orientation FAQ. 
<http://www.cyberdyne-object-sys.com/oofaq2/> 

Holmes, B.J. (1992) Convert to C and C++. DP Publications. 

Holmevik, J.R. (1995, February 23) History of Simula. 
<http://www.cs.chalmers.se/ComputingScience/Education/Courses/z3sim/
SIMULA-HISTORY.txt> 

Interactive Software Engineering Inc. (1998) About Eiffel. 
<http://www.eiffel.com/doc/eiffel.html> 

Kempe, Magnus (1997, February 5) ADA Frequently Asked Questions.  
<http://www.adahome.com/FAQ/comp-lang-ada.html#title> 

Kinnersley, B. (1998, April 11) Language List. 
<http://cuiwww.unige.ch/cgi-bin/langlist?object-orient> 

Klein, W.M. (1998, April 10) COBOL Frequently Asked Questions. 
<http://sunsite.doc.ic.ac.uk/usenet/usenet-by-
hierarchy/comp/lang/cobol/COBOL_FAQ> 

Knudsen, J. L. (1997, December 8) Beta Frequently Asked Questions. 
<http://sunsite.doc.ic.ac.uk/usenet/usenet-by-
group/comp.lang.beta/FAQ:_BETA_Programming_Language_(version_1.
11_-_08_Dec_97)> 

Koopmans, P. S. (1996, July 17) The Composition Filters Object Model. 
<http://www.trese.cs.utwente.nl/sina/cfom/index.html> 

Lafore, Robert (1991) Object-oriented programming in C++. Waite 
Group Press. 

Latta, C. (1995, August 28) Smalltalk Frequently Asked Questions. 
<http://xcf.berkeley.edu/pub/misc/smalltalk/FAQ/index.html> 

Lutz, M.(1996) Programming Python. O'Reilly & Associates. 

Meyer, B.(1992) Eiffel: The Language. Prentice Hall. 

Nierstrasz, O. (1998, February 3) Object-Oriented Information Sources. 
<http://www.iam.unibe.ch/cgi-bin/ooinfo?language> 



  

A History of Object-Oriented Programming Languages and their  
Impact on Program Design and Software Development 

10/12/99 

Page 12

Oberon Microsystems (1997, July 17) A Brief History of Pascal. 
<http://www.oberon.ch/docu/history.html>  

Parker, S.P. (1988) Computer Science Source Book. McGraw Hill. 

Rossum, G. (1998, April 10) The Whole Python FAQ. 
<http://grail.cnri.reston.va.us/cgi-bin/faqw.py?req=all> 

Schneider, M (1998, April 5) Object-Oriented Languages: Overview. 
<http://www.parallax.co.uk/cetus/top_languages.html>  

Schoenmakers, P.J. (1998, March 18) Objective-C Frequently Asked 
Questions. <http://sunsite.doc.ic.ac.uk/usenet/usenet-by-
hierarchy/comp/lang/objective-c/comp.lang.objective-
c_FAQ,_part_1_3:_Answers> 

Sutherland, J. (1995, May) “C++, OO Cobol, and Smalltalk: Good, 
Better, Best.” Object Magazine. 5(2). pp.32-35. 

Topper, A. (1994, February) “Object-Oriented COBOL Standard.” 
Object Magazine. 3(6). pp.39-41.  


