
Model Driven Architecture ©2000 Object Management Group Page 1

Model Driven Architecture

by Richard Soley and the OMG Staff Strategy Group

Object Management Group
White Paper
Draft 3.2 – November 27, 2000

Preface: OMG’s Accomplishments

It’s about integration. It’s about interoperability. For eleven years, the Object Management
Group (OMG) has focused on making sure that you can integrate what you’ve built, with what
you’re building, with what you’re going to build. As the pace of technology continues to
quicken, and the demands of integrating your existing legacy systems, your new intranet, and
your e-business fall on your shoulders, you need an architecture that makes interoperability
central to your infrastructure. The bad news is that there will never be a single operating system,
single programming language, or single network architecture that replaces all that has passed; the
good news is that you can still manage to build systems economically in this environment.

Infrastructure Standards

The OMG has led the way in providing
vendor- and language-independent
interoperability standards to the enterprise.
Our mission started with a focus on CORBA
which took its most recent shape in 1999 with
the adoption of the CORBA 3.0 specification.
To the 1995 Internet-based architecture of

CORBA/IIOP, CORBA 3.0 added component-model technology that pulled together the
heterogeneous computing platforms of the end of the century: the Internet, Java, Windows, SQL
back ends, and a thousand other technologies. While this work was going on, other additions to
CORBA extended it into environments that require specialized Real-Time, Fault-Tolerant, and
Embedded systems. CORBA is a huge success in these markets, and continues to be expanded
down (into automotive and aerospace embedded, smart transducer markets) and up (into fault-
tolerant, failover, worldwide integrated enterprise customer solutions).

CORBA, the CORBAservices, and Domain Facilities are an integral part of computing today,
playing a key role in millions of installations everywhere. Nearly all the application server
products on the market are based on OMG standards, and many of the thousands of OMG success
stories are documented on our website at www.corba.org. CORBA programming skills are in
demand; a search of the on-line job market returns thousands of job listings requesting CORBA
knowledge and experience.

Since its inception, the goal of the OMG has been to enable a global information appliance – that
is, to make it just as easy to plug into information as it is to plug into power. Global travelers
know that, although they may need an adapter or converter to plug into the mains as they move
from country to country, no fundamental difference will keep them from using the power that

CORBA was a powerful first step, but
we have more steps to take.

Fred Waskiewicz, OMG Director of Standards

Model Driven Architecture ©2000 Object Management Group Page 2

passes through the cord. By providing transparency to operating system, programming language
and even network protocol, CORBA provides the adapter for the information plug, breaking
down barriers to interoperability at enterprises around the world.

Modeling Standards

UML, the Unified Modeling Language, allows a model to be constructed, viewed, developed, and
manipulated in a standard way at analysis and design time. As blueprints do for an office
building, UML models allow an application design to be evaluated and critiqued before it is
coded, when changes are easier and less expensive to make. In addition, the Common Warehouse
Meta-model (CWM) standardizes how to represent database models (schema), schema
transformation models, OLAP and data mining models, etc. The Meta -Object Facility (MOF)
standardizes a facility for managing models in a repository. And finally, XML Metadata
Interchange (XMI) is an interchange format for models, based on the MOF and the popular
language XML.

The OMG’s modeling specifications
complement but not limited to
CORBA. They are being used in
virtually every development
environment including Java/EJB,
message-oriented middleware,
DCOM/COM+/.NET and XML/SOAP.

The World’s Best Standardization Process

In addition to its technologies, OMG has the world’s best standardization process. Executing our
process, building consensus as they converge on technical details, OMG members produce each
new specification in nine to seventeen months. Proven in the marketplace with the standardization
of CORBA, the CORBAservices, Domain Facilities, UML, the MOF, and OMG’s other modeling
standards, the process is one of our group’s major assets. OMG’s technology adoption process
will play a major role in the extended standardization work proposed in this paper.

The Problem We Face: Middleware Proliferation

What’s middleware? Middleware environments started out providing interoperability using
architectures that are standard (i.e., CORBA), proprietary (e.g., DCOM or MQseries), or
somewhere in the middle (e.g., JMI or HTTP/XML/SOAP). Essential services such as
transactions, directory, persistence, event handling, and messaging, were added over time.
Recently, more powerful middleware has emerged that builds on the basic interoperability

environments to make it easier to
construct transactional enterprise
components (CORBA Component Model,
EJB, MTS/COM+) that execute on
application servers.

It’s difficult – in fact, next to impossible –
for a large enterprise to standardize on a
single middleware platform. Some

Over the past decade or more, companies
have endured a succession of middleware
platforms.

Jon Siegel, OMG Director of Technology Transfer

UML is the product of years of experience in
how to model software systems.
Andrew Watson, OMG Vice President of Architecture
and Technical Director

Model Driven Architecture ©2000 Object Management Group Page 3

enterprises found themselves with more than one because their different departments have
different requirements, others because mergers or acquisitions created a mix. Even the lucky
enterprise with a single middleware choice still has to use other technologies to interoperate with
other enterprises and B2B markets.

The middleware environments that are most visible today are CORBA, Enterprise JavaBeans,
message-oriented middleware, XML/SOAP, COM+ and .NET. However, over the past decade or
so, the middleware landscape has continually shifted. For years we’ve assumed that a clear
winner will emerge and stabilize this state of flux, but it’s time to admit what we’ve all suspected:
The sequence has no end! And, in spite of the advantages (sometimes real, sometimes imagined)
of the latest middleware platform, migration is expensive and disruptive. (We know an industry
standards group that, having migrated their standard infrastructure twice already, is now moving
from their latest platform du jour to XML.)

At the beginning of the new century, OMG has a middleware solution that works: CORBA.
Today CORBA is widely used to communicate over the Internet, integrating applications 24
hours a day, seven days a week. OMG’s layered services and vertical market specifications build
on CORBA, and are strongly established through the OMG community process. CORBA is the
only middleware platform that is both vendor- and language-independent.

Nevertheless, enterprises have applications on different middleware that simply have to be
integrated even though this process is time-consuming and expensive. Furthermore, the
middleware they use continues to evolve.

To make matters even more complicated, different technologies have been used depending on
whether communication is within or beyond the firewall. A component built on the assumption
that it communicates within a firewall might have to be exposed beyond the firewall for B2B e-
commerce, and a component exposed via an extranet might be moved behind the firewall because
of an acquisition or merger. Thus, in addition to the basic integration problem, the IT
organization must find a way to preserve the development investment made in new components
as enterprise boundaries shifts and the underlying technology must change accordingly.

Addressing the Problem: Model Driven Architecture

There is a way to manage this situation,
and it’s based on the core modeling
standards from OMG. What we have is
the ability to apply modeling
technology to pull the whole picture
together.

Figure 1 lays out the Model Driven
Architecture (MDA), which is
language-, vendor- and middleware-
neutral.

Companies that adopt the MDA gain the
ultimate in flexibility: the ability to derive
code from a stable model as the underlying
infrastructure shifts over time. ROI flows
from the reuse of application and domain
models across the software lifespan.
Dr. Richard Soley, OMG Chairman and CEO

Model Driven Architecture ©2000 Object Management Group Page 4

The core of the architecture, at the center of the figure, is based on OMG’s modeling standards:
UML, the MOF and CWM. There will be multiple core models1: One will represent Enterprise
Computing with its component structure and transactional interaction; another will represent
Real-Time computing with its special needs for resource control; more will be added to represent
other specialized environments but the total number will be small. Each core model will be
independent of any middleware platform. The number of core models stays small because each
core model represents the common features of all of the platforms in its category.2

Whether your ultimate target is CCM, EJB, MTS, or some other component or transaction-based
platform, the first step when constructing an MDA-based application will be to create a platform-
independent application model expressed via UML in terms of the appropriate core model.
Platform specialists will convert this general application model into one targeted to a specific
platform such as CCM, EJB, or MTS. Standard mappings will allow tools to automate some of
the conversion. In Figure 1, these target platforms occupy the thin ring surrounding the core.

Figure 1: OMG’s Model Driven Architecture

1 In OMG’s terminology, these models are UML Profiles. A number of these profiles are already well along
their way to standardization at OMG.
2 In technical terms, it is a metamodel of the category.

Model Driven Architecture ©2000 Object Management Group Page 5

When we map a platform-independent model to a particular platform, we
produce not only artifacts native to that platform (IDL, deployment descriptors,
etc.) but also a platform-specific UML model. We do this because the UML
model can express the semantics of the platform-specific solution much more
richly than IDL or XML.
 David Frankel, Chief Scientist, IONA/Genesis and
 OMG Architecture Board Member

A separate core model (UML profile) for real time applications is in the works
right now and I think that the mappings from that to platforms will be quite
different than mappings of the Enterprise Computing model will be. An entity in a
model based on the Enterprise Computing core model will map to a persistent,
transactional component, whereas an entity in a real time model may map to
something quite different.
 C. Douglass Locke, VP-Technology, TimeSys Corp. and
 OMG Architecture Board Member

Maximizing automation of the mapping step is a goal; however, in most cases some hand coding
will be required, especially in the absence of MDA tools. As users and tool builders gain
experience, and techniques for modeling application semantics become better developed, the
amount of intervention required will decrease.

The platform-specific model faithfully represents both the business and technical run-time
semantics of the application. It’s still a UML model, but is expressed (because of the conversion
step) in a dialect (i.e. a profile) of UML that precisely mirrors technical run-time elements of the
target platform. The semantics of the platform-independent original model are carried through
into the platform-specific model.

We can generate a lot of the code and reduce the need for hand programming by an
order of magnitude, and in some restricted cases we will be able to generate all of the
code.
 David Frankel, Chief Scientist, IONA/Genesis and
 OMG Architecture Board Member

The next step is to generate application code itself. For component environments, the system will
have to produce many types of code and configuration files including interface files, component
definition files, program code files, component configuration files, and assembly configuration
files. The more completely the platform-specific UML dialect reflects the actual platform
environment, the more completely the application semantics and run-time behavior can be
included in the platform-specific application model and the more complete the generated code
can be. In a mature MDA environment, code generation will be substantial or, perhaps in some
cases, even complete. Early versions are unlikely to provide a high degree of automatic
generation, but even initial implementations will simplify development projects and represent a
significant gain, on balance, for early adopters, because they will be using a consistent
architecture for managing the platform-independent and platform-specific aspects of their
applications.

Modeling as much of the application semantics as precisely as possible enables a
greater degree of code generation.
 Sridhar Iyengar, Fellow, Unisys Corporation and
 OMG Architecture Board Member

Model Driven Architecture ©2000 Object Management Group Page 6

As Figure 1 shows, many of today’s connection technologies will be integrated by the MDA, with
room for tomorrow’s “next best thing.” CORBA provides the best middleware choice because it
is vendor- and language-neutral, and bridges easily to all of the other middleware environments.
But, to accommodate those enterprises with multiple middleware platforms on their network,
many non-CORBA platforms will be incorporated into the MDA. One of the first will be the
Java-only EJB.

Because the MDA is platform-independent at its core, adding new middleware platforms to the
interoperability environment is straightforward: After identifying the way a new platform
represents and implements common middleware concepts and functions, OMG members will
incorporate this information into the MDA as a mapping. Various message-oriented middleware
tools, XML/SOAP and .NET will be integrated in this way; going one step further, by
rationalizing the conflicting XML DTDs that are being proposed in some industries, the MDA
can even help you interoperate across them.

Some of the transformation standards in the CWM can be used with quite an
effect to help solve the DTD transformation problems that the XML-specified
interface standards will inevitably run into.
 Jishnu Mukerji, System Architect, HP Corporation and
 OMG Architecture Board Member

As representations of multiple middleware platforms are added to the MDA and mature over
time, generation of integration tools – bridges, gateways, and mappings from one platform to
another – will become more automated.

Interoperability will be most transparent within an application category: Enterprise applications
with other Enterprise applications; Real-Time applications with other Real-Time applications.
This follows from our basis on a separate core model for each category; differences between
application categories prevent us from basing all of our applications on a single core model. By
identifying and exploiting concepts common to two or more categories, even these boundaries
can be smoothed somewhat.

Our discussion so far has assumed that we were building our application – and its model – from
scratch. Legacy applications do not fit this pattern. With many built before component
environments were even conceived, applications in this category typically will not fit smoothly
into any of our core models. However, legacy applications may be brought into the MDA by
wrapping them with a layer of code consistent with the MDA Enterprise component core model,
or another core model if appropriate. If we build an MDA model of the wrapper first, the outer
portion – that faces the network and interoperates with our other applications and services – may
be generated automatically at least in part, although the other side of the wrapper – that invokes
and returns from the legacy application itself – will typically have to be hand coded.

Legacy wrappers will have to do all sorts of things that require programmer
intervention and can’t be rolled into a generic mapping rule, such as making LU
6.2 calls to mainframe transactional systems.
 Tom Rutt, DMTS, Global Strategic Standardization, Lucent,
 and OMG Architecture Board Member

Model Driven Architecture ©2000 Object Management Group Page 7

As the next generation of OMG standards, the MDA plays the role of the next generation Internet
ORB, integrating across all middleware platforms – past, present, and future. OMG, the
organization that knows ORBs better than any other, is the ideal organization to extend this
concept beyond middleware standards to a middleware-neutral, model-driven approach. MDA
users gain these specific advantages:

?? You will be able to build new MDA-based applications using the middleware of your
company’s choice. You will have the security of knowing that the essential semantics of
your application have been systematically distilled in the form of a platform-independent
model and that any future need to migrate to different middleware (or even new versions
of the same middleware) will thus be reasonably manageable. Interoperability bridges
and gateways to other MDA-based applications within your enterprise as well as
interconnections with customers, suppliers, and business partners can be produced
methodically, using a consistent architecture and some degree of automatic generation.

?? Your legacy applications – that is, the ones that keep your business in business – will
interoperate with your current applications once you wrap them as we described and
incorporate their functions into the MDA. You can leave them on their established
platforms; the MDA will help automate the construction of bridges from one platform to
another.

?? Industry standards – in your industry and others – will include platform-independent
models defined in terms of the MDA core models: Standard facilities performing
standard functions, that you can buy instead of build, with interoperability and
evolvability improved by their MDA roots. We’ll describe these facilities and their role in
the next section of this paper.

?? As new middleware platforms emerge, the OMG’s rapid consensus-based standardization
process will incorporate them into the MDA by defining new standardized mappings.
MDA tools will thus be able to expand the list of platforms that they can target when they
assist in converting a platform-independent model. The tools will also be able to expand
their support for bridges to incorporate the new platforms.

?? Developers gain the ultimate in flexibility, the ability to regenerate code from a stable,
platform-independent model as the underlying infrastructure shifts over time. ROI flows
from the reuse of application and domain models across the software lifespan–especially
during long-term support and maintenance, the most expensive phase of an application’s
life.

?? Models are built, viewed, and manipulated via UML; transmitted via XMI; and stored in
MOF repositories.

?? Formal declaration of semantics of systems (through modeling) will increase software
quality and extend the useful lifetime of designs (and thus return on investment).

Taking advantage of our standards
and tools that exploit them, OMG
members have this integration task
well underway. The Enterprise
Computing core model is being
defined and mapped to the most-used
middleware platforms. A core model
is also being defined for Real Time
computing.

There is another dimension of instability that
the relatively stable platform-independent
model protects you from: Shifting enterprise
boundaries. The IT manager’s challenge is
how to preserve the development investment
made in new components when a boundary
shifts and the underlying technology must
change. Stable models address this challenge.

Andrew Watson, OMG Technical Director and Vice
President of Architecture

Model Driven Architecture ©2000 Object Management Group Page 8

Standardizing Domain Models

Since January 1996, a sizeable percentage of OMG members have been meeting in Domain Task
Forces, communities focused on standardizing services and facilities in specific vertical markets.
Until now these specifications have consisted of interfaces written in OMG IDL with
accompanying semantic description in English text. Standardizing components at a platform
level, in terms of standards such as CORBA, is certainly a viable contribution to solving the
integration and interoperability problem, but we can do something additional.

A well-conceived service or facility is always based on an underlying semantic model that is
independent of the target pla tform, even if that model is not distilled explicitly. OMG’s domain
specifications fall into this category because the model for virtually every one is not expressed
separately from its IDL interfaces. Since their models are hidden, these services and facilities
have received neither the recognition nor the widespread implementation and use that they
deserve outside of the CORBA environment, especially considering the quality of their
underlying models. Extending these implied models outside of CORBA just makes sense. The
Healthcare Resource Access Decision Facility, already implemented in Java and EJB in addition
to CORBA, is an example. There are more.

Thus, in order to maximize the utility and impact of OMG domain facility specifications in the
MDA, they will be in the form of normative, platform-independent UML models augmented by
normative, platform-specific UML models and interface definitions for at least one target
platform. The common basis on MDA will promote partial generation of implementation code as
well, but implementation code of course will not be standardized.

Today OMG has ten Domain Task Forces with several more “in the chute;” more are added from
time to time. Rather than show them all in a static diagram, we’ve only included a representative
sample in Figure 1 where they appear as rays emanating from the center.

The Domain Task Forces (DTFs) produce standard frameworks for standard functions in their
application space. For example, a Finance DTF standard for an accounts receivable facility might
include a platform-independent UML model, a CORBA-specific UML model, IDL interfaces, a
Java-specific UML model, and Java interfaces. XML DTDs or schema generated via XMI-based
mapping rules could be included as well. All of these artifacts would be normative. Such a
standard would have broad impact, in that the platform-independent model would be useful even
in middleware environments other than those targeted by the platform-specific parts of the
specification. Since accounts receivable is an Enterprise Computing application, the normative,
platform-specific artifacts would be derived at least partially via standard mappings of the
Enterprise Computing core model to the platforms.

As another example, the Manufacturing DTF could produce normative MDA UML models, IDL
interfaces, Java interfaces, XML DTDs, etc. for (Figure 2) CAD/CAM interoperability, PDM
(Product Data Management), and a Supply Chain integration facility. Once the MDA models for
these have been completed and adopted, their implementation can be partially automated in any
middleware platform supported by the MDA.

Model Driven Architecture ©2000 Object Management Group Page 9

Figure 2: UML models of frameworks for vertical facilities

The three facilities that we’re using for this example – CAD/CAM, PDM, and Supply Chain –
demonstrate a benefit that only the MDA can provide: CAD/CAM and PDM applications are
tightly integrated and so will probably be implemented by an individual enterprise or software
vendor in, for example, CORBA or EJB. Supply Chain Integration, on the other hand, is more of
an inter-enterprise facility so we might expect an XML/SOAP based implementation supported
by an industry market-maker or trade organization to become popular. But, it will be essential to
interoperate among the three: CAD/CAM designs feed into PDM production facilities which
drive the supply chain; in turn, the supply chain will refer back to CAD/CAM for details on a
particular part. By starting all three out as UML models in the MDA, we may eventually be able
to generate a significant portion of the implementation of each on its preferred platform, as well
as the bridges we need to integrate each of the facilities with the other two.

Pervasive Services

Enterprise, Internet, and embedded computing rely on a set of essential services. The list varies
somewhat depending on the source but typically includes Directory services, Event handling,
Persistence, Transactions, and Security. In addition, computing systems or applications may take
on specialized attributes in either their hardware or software – that is, they may be scalable, Real-
Time, Fault-Tolerant, or designed to fit in a confined environment (Embedded).

When these services are defined and built on a particular platform, they necessarily take on
characteristics that restrict them to that platform, or ensure that they work best there. To avoid
this, OMG will define Pervasive Services at the platform-independent model level in UML. Only
after the services’ features and architecture are fixed will platform-specific definitions be
generated for all of the middleware platforms supported by the MDA.

At the abstraction level of a platform-independent business component model, services are visible
only at a very high level (similar to the view the component developer has in CCM or EJB).
When the model is mapped to a particular platform, code will be generated (or dynamically
invoked) that makes the calls to the native services of those platforms. The pervasive services
would be visible only to lower-level applications, i.e. applications that write directly to services.

Hardware and software attributes – Scalability, Real-Time, Fault Tolerance, or Embedded
characteristics – may be modeled as well. By defining UML representations for these
environments or, in the case of Fault Tolerance, an environment that combines it with Enterprise
Computing, OMG will extend the MDA to support and integrate applications with these desirable
characteristics.

Model Driven Architecture ©2000 Object Management Group Page 10

Figure 3: MDA showing the Pervasive Services and specialized computing environments.

In Figure 3, we’ve shown the Pervasive Services as a ring around the outside of the diagram to
emphasize that they’re available to all applications, in all environments. True integration requires
a common model for directory services, events and signals, and security. By extending them to a
generalized model, implementable in the different environments and easily integrated, the Model
Driven Architecture becomes the basis of our goal of universal integration: the global information
appliance.

What You Can Do

Although much of the infrastructure for the MDA is in place or under construction, there is still a
lot to do.

If your company works at either the modeling or infrastructure level, you can have a voice in
defining the MDA – RFPs have been issued for UML 2.0, and all of the components of the BOI
except the first are still in their formative stages in the OMG adoption process. Of the mappings
to various middleware environments, only that to CORBA is even in progress – the rest exist only
as potential RFPs. UML models for the Pervasive Services have been neither constructed nor
adopted.

Model Driven Architecture ©2000 Object Management Group Page 11

Application models defined in this environment by OMG’s Domain Task Forces will form the
basis for implementations extending from CORBA to every middleware environment. Whether

your company is a provider or
user of domain-level
applications, now is the time to
get involved in their
standardization if you’re not
doing it already. If you are a
provider, this maximizes your
impact on the future standards at
the same time as it identifies you
as a key player; if you are a user,
this lets you put your company’s

requirements into the RFP that defines the new standard. This is your opportunity to have your
voice heard in the models and standards that you will end up using; you will be working with the
best and the brightest in the industry to develop the architecture of choice, which

?? Integrates what you’ve built, with what you’re building, with what you will build
in the future;

?? Remains flexible in the face of constantly changing infrastructure; and
?? Lengthens the usable lifetime of your software, lowering maintenance costs and

raising ROI.

Expanding the Role of the Object Management Group

We are continuing our quest to support integration and interoperability across heterogeneity at all
levels. Our first mission, to enable integration through the introduction of the distributed object
model, is complete: objects are the way systems are built today, at the core of every vendor’s
enabling architecture and also at the core of all e-businesses. But the integration task is not yet
done. To focus on this, OMG will extend our focus from a middleware-centric to a modeling-
centric organization.

To support this effort, the OMG must also concentrate extra effort on conformance testing,
certification of programmers and certification of products (branding). While OMG has been
involved in the past with various testing & branding efforts for its standards, and is currently
building programmer certification for the CORBA and UML technologies, the expanded role of
the OMG must be built on rock-solid testing, certification and branding. In many cases these
efforts will depend on strong relationships with outside organizations with relevant expertise.
Focusing on this problem is critical to the success for OMG’s new role.

The foundation for the new role of the organization will be the current Analysis and Design Task
Force and its work on UML, the MOF, XMI, and CWM, along with work in progress on the BOI
and UML representation of EAI.

Today, companies whose submissions are adopted by OMG members as our standard must agree
to market or commercially use an implementation of the specification. Under MDA, the
commercial availability requirement will remain, ensuring that OMG standards remain relevant to
the marketplace.

I think the requirements for business software will
continue to evolve faster than the technology
solutions and that business developers will
continue to have "programming" jobs for the rest
of my career.

Carol Burt, 2AB, Inc., and OMG Architecture Board Member

Model Driven Architecture ©2000 Object Management Group Page 12

CORBA is a foundation of this new architecture. As the only vendor- and language-independent
middleware, it is a vital and necessary part of the MDA superstructure; software bridges would be
hard to build without it. Extending this superstructure, the MDA is expressed completely in terms
of modeling concepts, moving the reuse equation up one level.

Conclusion

The need for integration remains strong and OMG’s work is not yet complete – we need to build
on the success of UML and CORBA. With our experience, cohesive membership, established
process, and tradition of consensus-based decision-making, OMG is in the ideal position to
provide the model-based standards that are necessary to extend integration beyond the
middleware approach. We’ve outlined the task, and directions of the solution, in this paper. Now
is the time to put this plan into effect. Now is the time for the Model Driven Architecture.

