

The Emergence of a Business Object Component Architecture

Jeff Sutherland, IDX Systems Corporation

Abstract

Object technology, a necessary but not sufficient condition
for software reuse, requires an infrastructure that supports
plug compatible Business Object Components for fast and
flexible delivery of products to the marketplace. The Object
Management Group (OMG) Business Object Domain Task
Force (BODTF) was the initial focal point for
standardization of a Business Object Component Architecture
(BOCA).1 Priming this effort required joint work with the
Accredited Standards Committee X3H7 Object Information
Management2, and their joint sponsorship of the OOPSLA
Business Object Component Design and Implementation
Workshop for the years 1995-99. Emergence of W3C XML
standards will further enhance BOCA and enable a
distributed business object system that provides
interoperability between disparate enterprise applications
on the Web. 3

1 Background

Standardization of a framework for a Business Object
Component Architecture requires coordination between
ANSI/ISO standards bodies and the Object Management
Group. The effort is informed by academic, government, and
industry research papers presented annually at the OOPSLA
Workshop on Business Object Component Design and
Implementation.

1.1 X3H7 Object Information Management

The International Standards Organization (ISO) is
extending the international standard Reference Model for
Open Distributed Processing (RM-ODP4) to incorporate
enterprise modeling. RM-ODP compliance is a requirement
for OMG standards submissions, and is the primary linkage
between the ISO and the OMG.

X3H7 (now part of NCITS Technical Committee T3:
Open Distributed Processing) is the U.S. technical committee
for this international work item and is tasked with the
following:
x Refine the RM-ODP enterprise language, explicating the

relationship of an enterprise specification of a system to
other RM-ODP viewpoint specifications of that system
to enable the RM-ODP to be used for specification of
object-based application architectures.

x Ensure that the enterprise language together with other
RM-ODP viewpoint languages is suitable for the
specification of a concrete application architecture to fill
a specific business need.

x Measure success with a demonstration of the use of the
RM-ODP viewpoint languages to specify a concrete
application architecture.

1.2 OMG Business Object Domain Task Force
(BODTF)

With a membership of over 800 software vendors,
software developers, and end users, the OMG goal is to
establish CORBA as standard middleware through its
worldwide standards specifications: CORBA/IIOP, Object
Services, Internet Facilities and Domain5 Interface
specifications. Established in 1989, OMG's mission is to
promote the theory and practice of object technology for the
development of distributed computing systems. The goal is to
provide a common architectural framework for object
oriented applications based on widely available interface
specifications.

The Object Management Group has chartered the BODTF
to facilitate and promote:
x the use of OMG distributed object technology for

business systems,
x commonality among vertical domain task force

standards,
x simplicity in building, using, and deploying business

objects - for application developers,
x interoperability between independently developed

business objects,
x the adoption and use of common business object and

application component standards, and
x to issue requests, evaluate responses and propose for

adoption by the OMG, specifications for objects,
frameworks, services and architectures applicable to a
wide range of businesses.

1.3 OOPSLA Workshop on Business Object
Component Design and Implementation6

OOPSLA (Object-Oriented Programming, Systems,
Languages, and Applications) has been the leading object
technology conference for more than a decade. There are a
wide variety of participant-driven workshops, tutorials,
invited speakers, panels, debates, and technical papers

capturing the latest in both research and development
experiences.

The OOPSLA Workshop on Business Object Component
Design and Implementation is jointly sponsored by X3H7 and
the OMG BODTF for the purpose of soliciting technical
position papers relevant to the design and implementation of
business object component systems.

The goals of the OOPSLA Workshop on Business Object
Component Design and Implementation are to:
x Enhance the pattern literature on the specification,

design, and implementation of interoperable, plug and
play, distributed Business Object Components.

x Clarify the design and implementation of component
systems, particularly systems in which workflow patterns
and the REA accounting model7 are basic building
blocks for business applications.

x Contribute to emerging architectures for net-based
applications, particularly those that integrate business
object components such as web servers; object and
relational databases; and XML technologies.

x Pursue issues raised by papers on heterogeneous
distributed workflow systems presented in previous
workshops; specify business object solutions to mobile
agents, process engines, and systems that exhibit
emergent behavior; cross-fertilize business object design
concepts with experience from the field of complex
adaptive systems.

x Share experience reports on business object component
systems both in development and in production.

2 Why Business Object Component-Based
Development?

Gradual improvements in productivity and enhancements
in quality are no longer enough to maintain market leadership
in a global environment. Time to market of new products and
rapid evolution of old products and applications are key
success factors. In 1995, X3H7 and the OMG BODTF joined
forces to initiate a radical change in software development
environments, a change that would take years to specify and
decades to implement.

Accelerating product evolution requires reinventing the
processes that bring products to market and eliminating
processes that do not add value. Since modern corporations
have embedded many rules and procedures for product
delivery in computer systems, the software applications that
run the business must undergo significant change. To gain the
strategic advantages of speed and flexibility, corporations
must remodel their business processes, then rapidly translate
that model into software implementations. The rapid adoption
of the Internet since 1995 has accelerated the pace of software
evolution and pushed it in the direction of global, distributed
object computing, the target environment for BOCA.

Business Process Reengineering (BPR) sets the stage for
continuous evolution of business processes to meet rapidly
evolving business requirements. Implementation of software

systems that support BPR requires Business Object
Components that can both simulate corporate procedures and
translate smoothly into software objects. Well-designed
Business Object Component implementations can be easily
modified as the business changes. In particular, if software
implementation can be generated from design, change
becomes easy, rather than difficult or impossible.

Reorganization of business processes is most effective
when:
x there is a well understood model of the existing business,
x an evaluation of alternative future models against the

current business is performed, and
x a model-driven approach is used to realign the business

strategy, processes, and technology.
A multi-layered, object-oriented blueprint of the enterprise

can drive the refocusing, realignment, and reorganization of
the business.8 Current attempts to implement this process
under the rubric of Business Process Reengineering (BPR)
have been largely ineffective due to difficulties in changing
monolithic organizations, processes, and information systems.

Time

Log
 Performance/$
 Capability/$

Componentized Hardware
2x/year

Application Software
(Function Points/Person month)
 < 10x/30 yrs

1965 1995
20x

230x

Figure 1: Hardware Price/Performance vs. Software Price
Performance9

Figure 1 demonstrates that enhancing the productivity and

performance of integrated circuits (IC) has led to exponential
growth in computing power over the past thirty years
(Moore’s Law), while software development productivity has
increased only one order of magnitude. Most experts,
including Moore himself, expect this trend to hold for at least
another two decades.”10

Moravec11 has more recently observed that information
handling capacity in computers has been growing about ten
million times faster than it did in nervous systems during
human evolution. Computing power doubled every two years
in the 1950s, 1960s and 1970s, doubled every 18 months in
the 1980s, and is doubling each year in the 1990s.

Custom chip development, which is largely software
based, has followed Moore’s Law due to the heavy capital
investment in tools and technology common in the IC chip
industry. However, this has not led to comparable gains in
business application software development, largely due to the
lack of automated software construction and failure to achieve
large scale reuse of software components in business
applications.

The software productivity problem is a core issue for the
X3H7 and the OMG BODTF as they assess how to maximize
the impact of software standards development on the
worldwide business community.

2.1 X3H7 Contributions

Document X3H7-93-23, Objectives and Operations12,
provided guidelines for work of the X3H7 during the period
1993-96, and included:
x Developing liaisons with groups working on object

oriented standards and review their progress.
x Completing the X3H7 Object Model Features Matrix

document13 that defines in some detail the characteristics
of object models being proposed by different groups.

x Developing an X3H7 reference document based on the
Features Matrix to present to targeted groups working on
object model standards.

x Based on importance of each liaison group and the
timing of each group in the standards development
process, presenting formal proposals to these groups to
facilitate harmonization of object model standards and
enhance interoperability of distributed object systems.

x Developing scenarios of problems arising in the
interaction of object systems to clearly illustrate the
technical issues involved in distributed object
interoperability.

The majority of members of X3H7 are also members of
the OMG and committed to seeing relevant standards
implemented by industry bodies. Under the editorship of
Frank Manola, the X3H7 Object Model Features Matrix
developed an analysis of issues involved in harmonizing
object models. This showed that competing object models
provided not only different structures, but often different
semantics underlying the concepts that supported these
structures.

Interoperability of object models requires understanding
the structure and semantics of commonly used object-oriented
frameworks and the interfaces between these development
frameworks. Object models must interoperate within widely
used frameworks and the number of frameworks should be
few. An X3H7 consensus was reached in 1994 that 80% of
new object-oriented development would be done in three
application languages (Smalltalk, OO COBOL, and C++).
These applications would communicate through a Business
Object Request Broker to four external environments – X3H2
SQL standard databases, ODMG standard object databases,
Microsoft’s COM environment, and the OMG CORBA
environment. Figure 2 illustrates the views of X3H7 at that
time, updated to reflect the impact of the Web.

&�� 6PDOOWDON

22

&2%2/ -DYD

64/ 2'0* &25%$&20
:HE

%URNHU

%XVLQHVV 2EMHFW 5HTXHVW %URNHU

DCOM IIOP XML

Figure 2. ANSI X3H7 Standardization Targets. 24 Sep
199414, updated 16 Feb 1999

The widespread adoption of the Internet since 1995 has

accentuated the need for interoperable, distributed object
standards and added Java to the list of widely used
development languages. One of Java’s primary benefits is
enhancing interoperability of distributed systems, a primary
objective of X3H7. In 1998, a World Wide Web Consortium
(W3C) proposal for a WebBroker combined with an evolving
set of standards for an XML distributed object computing
infrastructure, added a fifth environment requiring
interoperability.15

Even before the rapid growth of the Internet, there was a
consensus that application developers should be shielded
from the details of these implementation environments. They
should be able to use Object-Oriented Analysis and Design
(OOAD) tools to build an application in a standard notation.
OOAD tools should be able to import legacy models from
CASE tools. The application model and all of its artifacts
should be stored and versioned in an object repository and the
runtime application binary objects should be generated from
the repository to conform to standard component interface
specifications. Request broker technologies should provide
automated mapping between development frameworks.
Figure 3 shows the X3H7 conceptual view of this problem.

Figure 3. ANSI X3H7 Standardization Targets. 24 Sep 1994,
Injecting a Business Model into a Runtime Environment

X3H7 members participating in OMG and other standards
bodies began driving the agenda of object model
harmonization in multiple organizations. They were key
contributors to the ISO standard RM-ODP, the distributed
processing reference model with which OMG technologies
must conform. They also agreed to co-sponsor, with the
OMG BODTF, a Business Object Component Design and
Implementation Workshop at the 1995 Conference on Object-
oriented Programming, Systems, Languages, and
Applications (OOPSLA), in order to draw research
contributions into the drive for common Business Object
Component standards.

2.2 OMG BODTF Contributions

In 1994, at the OMG BODTF, Sutherland16 presented his
findings on key issues in building life cycle object-oriented
development environments for business objects to standards
organizations, including the OMG Business Object
Management Special Interest Group (BOMSIG, now
BODTF). Simultaneously, Cory Casanave, 1995 Chair of the
OMG BODTF, edited a BOMSIG Business Application
Architecture White Paper17 and later OMG Common
Facilities RFP4: Business Object Facility and Common
Business Objects.18 These became the reference documents
for the BOCA standardization efforts to follow.

2.3 Business Objects as Reusable Components

Objects alone are not enough to gain the benefits possible
with object technology. Only plug compatible, larger grained
components can achieve a productivity breakthrough. Early
adopters of object technology asserted that packaging
software in object classes would allow software to obtain the
benefits of Moore’s Law seen in IC chip fabrication19 and
some projects have achieved major productivity benefits. For
example, a Maintenance Management System at General
Motors originally written in PL/I was rewritten under an EDS
contract in Smalltalk and achieved a 14:1 increase in
productivity of design, coding, and testing. Detailed analysis
of this project showed 92% fewer lines of code, 93% fewer
staff months of effort, 82% less development time, 92% less
memory needed to run, and no performance degradation.20

While there are many isolated projects that used object
technology to achieve dramatic productivity gains during the
past decade, this success has not translated into broad
improvements across the software industry. In 1995, META
Group reported that, “despite the promise of reusable objects,
most IT organizations have realized a scant 10%-30%
productivity improvement from object technology (OT).”21
Failure to achieve larger productivity gains was attributed to:
x data-centric, task-oriented application development,
x methodologies and cultures that do not promote

reusability, and
x few linkages between BPR-defined business processes

and IT support initiatives.

Business Objects are designed to support a clearly defined
relationship between BPR-defined business processes and
software implementation of these components. Using an
object-oriented development methodology yields quick time
to market and object-oriented design allows for rapid
evolution of Business Objects in response to market
conditions. The bottom line is that object technology is a
necessary, but not sufficient condition for large returns on
investment. It must be combined with focus on delivering
Business Object Components that enable fast and flexible
delivery of new or enhanced products in the marketplace.

3 The Need for a Business Object Component
Architecture

As business models are renewed, software architectures
must be transformed. A Business Object Component
Architecture (BOCA) is an effective solution for dynamic
automation of a rapidly evolving business environment.

Dynamic change requires the reuse of chunks of business
functionality. A BOCA must support reusable, plug-
compatible business components. Historically, the two
primary strategies used for implementing client/server
systems to support reengineering of business processes where
visual 4th Generation Languages and classical object
technology. While both of these approaches are better than
COBOL, neither of them can effectively implement plug and
play Business Object Components, nor do they allow systems
to rapidly evolve with changing business requirements.

What is needed is a component standard that can be
implemented with object technology. These components need
to plug and play into standard frameworks. The concept of a
BOCA incorporates objects, components, and frameworks
along with the essential tools and infrastructure to allow
autogeneration of full blown distributed object systems from
design artifacts. Furthermore, these systems can be
dynamically updated by changing the design and regenerating
code, allowing synchronization of software systems with the
constantly changing business processes seen in most
enterprises.

3.1 Building Business Object Components

A group of objects is the ideal unit of reuse. These groups
of objects should behave as a higher-level business process
and have a clearly specified business language interface.
Business Object Components are encapsulated with a
protocol that allows efficient communication with other
objects on the network. Work on the concept of Ensembles22
(a rigorous definition of a software module) has shown that
there is a minimal design specification for a plug compatible
component.23

Consider a typical client/server application like an order
entry system. This system takes a Purchase Order as input and
produces a validated order as output. The internals of this
component should be a black box to the external world. The

resulting order is input to another subsystem or, alternatively,
an exception condition is raised if the Purchase Order is not
valid for processing (see Figure 4).

Process PO

Manufacturing/Shipping Order

Exceptions
Figure 4. An Order Entry Business Object

To support plug-compatible reuse, a business component

needs encapsulation in the following ways. The external
world should not know anything about component internals,
and the internals should not know anything about external
components, other than allowing interested objects to register
for notification of specific events or exception conditions.

The internals of a business component are made of other
encapsulated business components. For example, when a
Purchase Order passes through the membrane of the Order
Entry business object, an internal component must see it,
validate it, look up customer information, inventory
availability and catalogue pricing, and build an order that is
consistent with business rules and procedures. Each of these
tasks is accomplished by embedded components, many of
them communicating with external data sources.

External databases should be encapsulated as business
objects components or reuse cannot be easily achieved. There
must be a resource tier with a database access component that
causes values from any kind of database to materialize as
objects inside the business component. Whether object-
oriented, relational, or other database access is required, a set
of class libraries designed to automate this interface will result
in a major savings in development resources.24

An Order Entry business object will typically have
multiple user interfaces. A clerk may be taking the order over
the phone, entering purchase information, validating customer
records and credit data, and reviewing an order for
consistency and customer acceptance. Other users may
require different presentation screens. User interfaces are
difficult and time consuming to build at the code level.
Today, much of this process can be automated. They should
be encapsulated as separate objects that communicate by
message passing to the Order Entry component..

A simple Order Entry client/server component has at least
four large-grained components, one or more presentation
objects, a workspace component that manages context during
the creation of a transaction, an enterprise component that
models transaction state, and a database access component
that shields the application developer from database access
languages, database internals, and network communications
(see Figure 5).

Figure 5. Business Object Component

Herzum25 defines a business object component as follows:
A business component represents the software

implementation of an autonomous business concept or
business process. It consists of all the software artifacts
necessary to express, implement and deploy a given business
concept as an autonomous, reusable element of a larger
information system.

Business component programmers focus their efforts on
the software implementation of a concept which is a
composition of software artifacts, including distributed
components.

Szyperski26 takes a complementary approach:
A software component is a unit of composition with

contractually specified interfaces and explicit context
dependencies only. A software component is deployed
independently and is subject to composition by third parties.

The first definition focuses on the concept of a component
within an enterprise system. The second surfaces the key
issues for components used across enterprise systems.

3.2 Distributing Business Object Components

System evolution will invariably distribute these Business
Object Components to maximize network performance and
processor utilization, and to ensure proper control, integrity,
and security of information. With the widespread adoption of
standards-based Internet technologies, distributed object
systems have become the norm. Business reengineering
implies implementing a distributed environment where
components encapsulating business functionality can be
migrated to nodes on the network that allow maximum
flexibility, scalability, and maintainability of a Business
Object Component system.

Figure 6. Application Business Object with Nested, Tiered
Components

Business objects made up of nested components allow
distribution of these components across a network. Figure 6
shows the logical application as a coherent set of nested
client/server components. Deployment of this large-grained
object may include distributing subcomponents across
multiple heterogeneous computing resources in dispersed
locations. Thus, an application designed on one processor is
scattered across a network at run time.

Developers of business information systems have taken
advantage of building applications with OLE components. At
Object World in San Francisco, Allied Signal won the
Computerworld Award for best object-oriented application of
1995.27 They reengineered the Supply Management Business
Process that took 52 steps to purchase a single part, so it now
requires only three steps to complete the same transaction.
The old process required seven people and took nine weeks to
produce an approved purchase order. The new Supply
Management Specialist Tool (SMST) allows one person to
complete the same process in nine minutes for established
suppliers with long-term agreements in place. In the case of
new suppliers, where a Request For Quote (RFQ) is required,
the process takes nine days. Table 1 summarizes these
benefits.

 Before After Improvement

Factor

Process Steps 52 3 17.3

Staff 7 1 7

Time 9 weeks 9 min 2400

Table 1: Reengineering a Purchase Order Component

In this example, cycle time of the process is reduced
2400:1 for established suppliers, and 5:1 for new suppliers.
Cost reduction is operational staff is 7:1. The impact of
improvement in business efficiency leading to greater
customer satisfaction and resulting market share is far larger
than reduced costs in operations overhead or development
time. It is the prime objective for use of Business Object
Component design tools to assure success of Business
Process Reengineering practice.

Despite isolated success stories, Brodie28 reported in 1995,
after a survey of 201 distributed object computing (DOC)
applications worldwide, that this technology was not and
would not be ready for prime time until vendors could deliver
standards based Business Object Component frameworks.

“For the moment, DOC is in its infancy and does not meet
industrial-strength requirements or the claims of its
proponents… There are even very recent claims that a major
breakthrough has occurred and that a DOC renaissance is
upon us.29 Based on our experience, GTE has decided to halt
the design, development, and deployment of DOC technology
and applications. In part this relates to our recognition of the
problems described... In part, it also relates to our pursuit of
commercial off the shelf (COTS) applications for which the

vendors are largely responsible for the issues raised.
Following a significant study of and investment in DOC
technologies and methodologies, we have concluded that the
benefits do not currently warrant the costs to overcome the
challenges described... The claims for increased productivity,
re-use, and lowered costs cannot be achieved with other than
very highly skilled staff who must work with immature
technology and methods. We will continue to investigate the
area and observe its progress and will be prepared to take full
advantage of the technology when DOC is more mature. I
look forward to a highly competitive market for the DOC
infrastructure and highly competitive products.”

Progress has been made towards addressing Brodies’
concerns since 1995. After the turn of the millenium, BOCA
standards and Web technologies will resolve these problems
and make distributed object computing easily accessible to
the average developer. Significant events leading up to this
capability are outlined below.

4 Achieving “Moore’s Law for Software”

Working with Capers Jones at Software Productivity
Research, Sutherland did an analysis in 1993 using a database
of thousands of projects on productivity of language
environments.30,31 This study showed that 4GL environments
were twice as productive in the real world as COBOL
environments in a full life-cycle analysis.

Smalltalk had the capability of doubling the productivity
of a 4GL environment, but only if 80% reuse was achieved.
Since the average amount of reuse by Smalltalkers in the
study was only 20% (not much better than C programmers at
15%) special tools needed to be used to enable this level of
productivity.

In Figure 7 below, OOAD+ is an example of a tool that
guarantees 80% reuse largely through automation, enables
roundtrip engineering from design to code and back, is tightly
integrated with user interface tools that allow
nonprogrammers to develop user interfaces, and generates
runtime components from design. Achieving these objectives,
consistent with the X3H7 design targets noted previously in
Figure 3, doubles the productivity of a Smalltalk
environment.

The ORB bar in Figure 7 refers to an OOAD+
environment that automates the mapping between application
objects and relation database storage of these objects.
Sutherland observed that in multiple projects in
heterogeneous business environments, hand coding
object/relational mapping absorbed more than 30% of
development resources.

Figure 7: Moore’s Law for Software

Sutherland estimated that by 1996, it would be possible to
buy 50% of an application as off-the-shelf components,
effectively doubling productivity. By 1997, early adopters
would be buying 50% of the application as external
components and reusing internally generated components for
another 25% of the application, effectively doubling
productivity on an annual basis, and beginning to achieve
Moore's Law for Software. Brad Cox's vision of software as
IC chips could be realized in such a component environment.

Successes in achieving these goals have occurred on a
isolated basis. At OOPSLA’98, Zincke32 gave an experience
report showing a production system that was developed at the
rate of 7.52 function points per person-day, an order of
magnitude faster than industry average. Widespread
achievement of these results has been limited by
redeployment of software tools for Internet applications,
effectively forcing the industry to repeat the lessons of the last
two decades of Smalltalk innovation, and the lack of standard
component environments in which to build domain-based
object-oriented frameworks.

4.1 OMG BOMSIG Business Application
Architecture and Common Facilities RFP-4

By mid-1995, BOMSIG completed its second revision of
a Business Application Architecture,33 noting that “with a
system comprised of a set of cooperative business objects, the
outmoded concept of monolithic applications becomes
unnecessary. Instead, your information system is comprised
of semi-autonomous but cooperative business objects that can
be more easily adapted and changed. This type of component
assembly and reuse has been recognized as a better way to
build information systems.”

The consensus notion of a Business Application
Architecture had evolved to what is now the standard three-
tier architecture with Business Objects in the middle tier. A
distinction began to be drawn between Business Objects as
entities and Business Objects as processes (see Figure 8).

Business Application Architecture

Business
Process
Objects

Non-object
Programs and
Components

Object
Technology
Components

DBMS

Implementation

Presentation
and

Desktop

Users

Business
Objects

Figure 8. Business Application Architecture Revision 2.
OMG 95-04-01

Towards the end of 1995, the Business Application
Architecture concepts had evolved into the issuance of OMG
Common Facilities RFP-4: Common Business Object and
Component Interoperability Facility (later known as the
Business Object Facility (BOF)). The thrust of the RFP was
to begin to build a layer on top of the OMG CORBA
infrastructure to enable a plug-and-play environment. Figure
9 became the central view of the problem:

Enterprise specific applications

CORBA infrastructure
(specialisations of CORBA, Object services

and other Common Facilities)

Financial
common

facility

Manufacturing
common

facility

Other
common

facilities

Common business objects

Component Interoperability Facility

Figure 9: Business Application Architecture. CFRFP-4,
OMG 95-12-13

The CORBA infrastructure provides an environment for
communication between distributed objects. However, 100%
of a business application needs to be hand coded in this
environment. It should be possible with a component
architecture to buy 80% of the application components and
only have to write 20% of the code. A Component

Interoperability Facility would provide generic superclasses
for business objects. Common business objects crossing
domains would be standardized, and domain frameworks
would be developed to use both the Common Business
Objects and the Component Interoperability Facility (later the
Business Object Facility (BOF).

4.2 It’s Never as Easy as it Looks

At the end of 1995, OMG Domain Task Forces where
created to emphasis the importance of user organizations and
vertical domain software to the future of OMG. BOMSIG
metamorphized into the OMG Business Object Domain Task
Force (BODTF) with the authority to issue its own RFPs and
Common Facilities RFP-4 evolved into BODTF RFP-1.

The leading response to the Business Object Facility
portion of BODTF RFP-1 matured, after several collaborative
efforts, into the Business Object Component Architecture
(BOCA). BOCA was approved by the OMG Architecture
Board but failed to get the required vote of the entire OMG
membership required for adoption as an OMG technology.

The problems with adopting a standard in 1998 revolved
around several phases of integration with and definition of
other OMG standards. It was necessary to harmonize BOCA
with parallel work in multiple areas:
x UML - The Unified Modeling Language (UML) for

object-oriented analysis and design became an OMG
Adopted Technology in 1997 through the united efforts
of Rational Software, Microsoft, Hewlett-Packard,
Oracle, Sterling Software, MCI Systemhouse, Unisys,
ICON Computing, IntelliCorp, i-Logix , IBM,
ObjecTime, Platinum Technology, Ptech, Taskon, Reich
Technologies, and Softeam corporations.34

x MOF - The Meta-Object Facility35 defines a simple
meta-metamodel with sufficient semantics to describe
metamodels in various domains starting with the domain
of object analysis and design. Integration of metamodels
across domains is required for integrating tools and
applications across the life cycle using common
semantics. This OMG Adopted Technology represents
the integration of efforts currently underway by the
Cooperative Research Centre for Distributed Systems
Technology (DSTC), IBM, International Computers
Limited, Objectivity, Oracle, System Software
Associates, and Unisys corporations in the areas of
object repositories, object modeling tools, and meta data
management in distributed object environments.

x CORBA Components - The current OMG RFP for
CORBA Components begins, “While abstract interfaces
are at the heart of object-oriented technology, they are
only one dimension of the complex space within which
distributed object applications are designed and built. In
recent years, the concept of component technology has
emerged as a more complete mechanism for expressing
object-oriented software entities and assembling them
into applications. Two prominent examples of

component models are JavaBeans, and ActiveX
Controls.” 36

4.3 The CORBA Component Conundrum

While BOCA achieved a reasonable level of integration
with UML and the MOF in 1998, the lack of clear definition
of a CORBA component model caused some OMG members
to question whether a standard should be approved when it
depended on an underlying component model that was still in
the process of initial specification.

The Gang of Four (IBM, Netscape, Oracle, and Sunsoft)
initiated the CORBA component effort in 1997 stating that “a
component framework must provide a standard way to ask
questions at design time as well as run time about the external
interfaces, presented as methods, properties and events. The
CORBA component model must support interface
composition, so that components and the applications that use
them are decoupled, and can evolve independently while
maintaining compatibility. It must be possible to pass
component state and methods by value so that native
language interfaces can be mapped naturally into CORBA
distributed operations. The CORBA component infrastructure
must interoperate with existing non-proprietary component
standards, such as JavaBeans. The component framework
must support the Internet deployment of multi-tier
applications, with URL naming of CORBA objects, and easy
access to CORBA objects and services from Java.”37

Currently, the way components are composed and "snap
together" is left up to the implementation (Java beans being
one such implementation). Without a standard component
model there are no true "plug and play" business components.
When CORBA components come on-line, BOCA IDL
mappings can be extended to utilize CORBA components,
achieving true "plug and play". Without the BOCA, CORBA
components provide a way to "snap together"
implementations, but no business application architecture to
snap them into.

In early 1999, the leading proposal for a CORBA
Component Model is similar to Enterprise Java Beans with
some significant differences. It is likely that the industry will
be faced with three component models to deal with (ActiveX,
JavaBeans, and a CORBA Component).

4.4 BOCA Current Implementation Status

The BOCA consists of several key concepts:38
CDL: BOCA proposes a Common Specification

Language (CDL), a way to write down, in a textual form,
business object specifications that use the meta-model. By
specifying the meta-model in textual form, BOCA facilitates
the creation of publishable business object standards.

IDL Mapping: The BOCA IDL mapping capability
provides the mapping from the meta-model to OMG IDL
interfaces. IDL interfaces necessarily contain technology
details that need to be shielded from the business developer
but are necessary for interoperability. Given a particular

business object model, interfaces must be expressed in a
consistent way that supports the underlying framework and
interoperability. The IDL mapping specifies the form and
content of business object interfaces based on the meta-
model.

Interoperability Framework: These are the CORBA
interfaces that business objects have to support and use to
achieve technical interoperability. The framework provides
the technical underpinnings for BOCA objects using the
meta-model. Standardization of the Interoperability
Framework depends on the future adoption of a CORBA
Component Specification standard.

Distributed business objects would not be possible without
the underlying distributed object infrastructure. The CORBA
meta-model, ORB and IDL are the basis on which the BOCA
framework is built. The framework is supported by the library
of CORBA services used by business objects in well defined
ways.

Software is available from Data Access Technologies39
that will generate business object components into the IBM
San Francisco Project Java Framework. An annotated UML
design autogenerates CDL and MOF metadata. These
products can be used to generate Java classes in IBM’s
proprietary framework. Enterprise Java Bean frameworks will
be available soon and BOCA will generate Enterprise Java
Bean code. When the CORBA Component Facility is
available BOCA will generate CORBA components.

4.5 Work in Progress

In 1999, the OMG BOCA effort refocused into a
Business Object Initiative (BOI) addressing the characteristics
of object-oriented analysis and design for enterprise
computing systems. The OMG BOI Roadmap document
noted that enterprise systems are closely tied to the business
processes of an institution. As a result, the design of these
systems will closely reflect the business domain of the
enterprise. Several important characteristics need to be
addressed in the design process:
x “The object types defined represent artifacts of the

entities, processes, rules and events that occur in the
enterprise business environment.

x “The number of object types is very large, sometimes
numbering in the hundreds or thousands.

x “The associations among the myriad object types are
numerous and the semantics of these associations are
particularly crucial to ensuring the ability of different
components to interoperate. The greater incidence in
enterprise-scale distributed object systems of interactions
among objects implemented by different development
teams further magnifies the need for precision in this
regard.” 40

Since the OMG had approved the Unified Modeling
Language (UML) as a standard in 1998, BOI proponents
argued that the important question was what, if anything,
needed to be added to UML to properly specify a business
object component system. What needed to be added to

specify systems that needed to respond to high level business
rules and events? What was important for building loosely
coupled components that would be created by multiple
development teams? How would UML be used to specify
plug and play component models? These questions led to
creation of four Request for Proposals (RFPs):

RFP 1: A UML Profile for Enterprise Distributed
Object Computing (EDOC). This UML profile41 must
support specification at the design level of information
required by all of the emerging OMG industry component
models. It must distinguish between business process objects,
business entity objects, and business rule objects. And it must
support modeling business events.

RFP 2: A UML Profile for CORBA. This RFP calls for
a UML profile supporting analysis and design semantics that
are unique to CORBA.

RFP 3: A Human-Readable Textual Notation for
the UML Profile for EDOC. This RFP calls for a Human
Usable Textual Notation (HUTN) that would allow object
models expressed in terms of the UML Profile for Enterprise
Distributed Object Computing to be expressed textually.

RFP 4: A Mapping to CORBA of the UML Profile
for EDOC. This RFP mandates that the mapping specify
how an object model expressed in terms of the UML Profile
for EDOC would be expressed in CORBA terms, including
how the CORBA objects would use the CORBA services.

These RFPs allow for competing proposals for UML
specification of business object component systems and
human readable text manifestation of those specifications,
essential requirements for automating the creation of
components from design. Presumable, portions of the original
BOCA specification will be resubmitted for standardization in
an environment where there is broader understanding within
the OMG of BOCA issues and the opportunity to be fully
consistent with the UML standard and the emerging OMG
component standard.

5 Future Directions – XML and the
WebBroker

In January 1998, Manola presented “Towards a Web
Object Model” to the OMG Internet Special Interest Group.42
This paper was developed under a DARPA contract to
determine how the Web would become a distributed object
computing environment. As the editor of the ANSI X3H7
Object Features Matrix, an extensive comparative analysis of
object models developed over the last decade, Manola was
ideally suited to the task.43

Conclusions were that the standardization of the
Extensible Markup Language (XML), associated XML
infrastructure standards, and the the World Wide Web
Consortium’s (W3C) Document Object Model (DOM),
would provide a native Web environment for distributed
XML objects. The important point is that XML is not just a
document model. It is the basis for a distributed object model
which includes messages, state, methods, and object-oriented
interfaces.

In April, 1998, a proposal was submitted to the W3C for a
WebBroker as a lightweight alternative to COM and CORBA
distribution models. The abstract stated:

A “necessary technological foundation exists to create a
unified distributed computing model for the Web
encompassing both document publishing and distributed
software object communication. For lack of a better term, this
model is referred to here as "WebComputing." Applications
designed for the WebComputing environment exhibit a mix
of features from both the Web publishing and the traditional
distributed objects paradigms, blended into a unified model.
The goal of this model is to extend the current Web
application model such that the benefits of distributed object
computing systems such as the OMG's CORBA and
Microsoft's COM+ can be realized in a Web native fashion.
The objective is to have a system which is less complicated
than the above mentioned distributed computing systems and
which is more powerful than HTML forms and CGI.”

A Resource Description Framework (RDF) Model and
Syntax Specification became a W3C Proposed
Recommendation in January 1999. Together with Uniform
Resource Identifiers (URI) which provide object identity and
Namespaces, RDF provides the capability to implement an
object model of an interoperable, distributed Web objects. It
enables interoperability between applications that exchange
machine-understandable information on the Web.

“RDF can be used in a variety of application areas; for
example: in resource discovery to provide better search
engine capabilities, in cataloging for describing the content
and content relationships available at a particular Web site,
page, or digital library, by intelligent software agents to
facilitate knowledge sharing and exchange, in content rating,
in describing collections of pages that represent a single
logical "document", for describing intellectual property rights
of Web pages, and for expressing the privacy preferences of a
user as well as the privacy policies of a Web site. RDF with
digital signatures will be key to building the "Web of Trust"
for electronic commerce, collaboration, and other
applications.”44

The Web is driving many companies towards XML as a
messaging paridigm within and between systems. Since it is a
tagged data format with variable length records, allowing
semantics to be defined separately from the data, one can
envision systems which dynamically recognize and unravel
XML packets of information and transform them into useful
internal messages within a business component.

Consider an example from a health content provider on the
Web. A request for an article from the New England Journal
of Medicine causes the content server to serve up an XML
copy of the article. This XML package is then sent to the
pricing server which looks at the XML and determines the
pricing for the article. It appends pricing information to the
XML package and passes the expanded information set to the
advertising server. This server, in turn, appends the
appropriate ads and sends the XML to the personalization
server which appends the appropriate personalization
information. Finally, the entire packet of XML information

arrives at a Web server which transforms the XML into the
appropriate HTML to ship to the client browser.

There are major benefits to this approach that radically
reduce programming and maintenance for such applications:
x XML software is rapidly appearing on the Web to

generate, process, and interpret XML, significantly
reducing programming requirements.

x Complex XML interactions can execute very fast while
human readable format significantly reduces debugging
costs.

x Data ordering and data field lengths can be interpreted
dynamically, drastically reducing transaction errors in
operations.

x An organization or standards body can centrally define
semantics and post them on the Web. XML tools can
dynamically access and interprete this information.

x XML allows separation of presentation from semantics
and data formatting. Multiple presentations of the same
data can be generated through XSL style sheets.

x A single XML object can be a globally distributed
complex concept via URL pointers, or an autonomous
agent roaming the Web, interpretable and runnable on
any Web server, or both simultaneously.

The natural direction for business object component
systems in the Web environment will be to use XML
distributed objects as the basis of the Workspace Tier of a
business object component shown in Figure 5. As a tagged
data model suitable for serializing objects, an XML
Workspace Tier of a business object component is an ideal
package, or kit of information, to pass around the enterprise as
a workflow object. Various components in an enterprise
system could “process” this XML kit, provide added value as
appended XML information, and ship it on to the next service
specified in a workflow graph.

6 Conclusion

When the development of a standard Business Object
Component Architecture is complete, we will have a standard
analysis and design language, a standard business
specification language, a standard plug and play component
environment, a standard meta-object facility for designs,
applications, and repositories, and standard interfaces for
distributed objects. Tools will be provided to generate
business systems from design into heterogeneous distributed
runtime environments. Code changes may be reengineered
into design supporting round trip engineering. A lightweight
WebBroker may render distributed object computing as easily
deliverable and as ubiquitous as HTML pages. This will
position the software industry for the twenty-first century and
launch a global effort to break down the barriers to
implementing Moore’s Law for Software.

7 References

1 Data Access Technologies, Inc., Electronic Data Systems (EDS),
National Industrial Information Infrastructure Protocols (NIIIP),
SEMATECH, Inc., Genesis Development Corporation, Prism
Technologies, IONA Technologies. Business Object Component
Architecture (BOCA), Revision 1.1. OMG Document: bom/98-01-
07.
2 X3H7 is now part of NCITS T3: Open Distributed Processing
Technical Committee. See the NCITS X7 Technical Committee
Home Page at
http://enterprise.systemhouse.mci.com/X3H7/default.html.
3 Portions of this paper were previously published as Sutherland, Jeff.
Why I Love the OMG: The Emergence of a Business Object
Component Architecture. ACM StandardView 6:1:4-13, March 1998
4 Open Distributed Processing Home Page.
http://enterprise.systemhouse.mci.com/WG7/default.html
5 The term “domain” refers to a realm of business interest such as
transportation, manufacturing, or finance. It is also used in this
document to refer to more specific areas of business interest such as
marketing, sales, shipping, etc.
6 OOPLSA Workshop on Business Object Component Design and
Implementation. http://www.jeffsutherland.org/oopsla99/index.html
7 Geerts, Guido. The Timeless Way of Building Accounting
Information Systems: The ‘Activity’ Pattern. OOPSLA Workshop on
Business Object Design and Implementation, 1997.
8 Jacobson, Ivar, Maria Ericsson, Agneta Jacobson. The Object
Advantage : Business Process Reengineering With Object
Technology. Addison-Wesley, 1995.
9 Digre, Tom. Business Application Components. In Sutherland J.,
D. Patel, C. Casanave, G. Hollowell and J. Miller (Eds). Business
Object Design and Implementation: OOPSLA'95 Workshop
Proceedings. Springer, 1997
10 pcwebopedia.com. Moore’s Law.
http://pcwebopedia.com/Moores_Law.htm
11 Moravec, Hans. Robot, Being: mere machine to transcendent
mind. 1998
12 Kent, William. X3H7 Objectives and Operations. X3H7-93-023,
18 January 1993.
13 Manola, Frank (Ed.) Object Model Features Matrix. X3H7-93-
007v12b, 25 May 1997.
14 Sutherland, Jeff. ANSI X3H7 Standardization Targets. X3H7-94-
35, 24 Sep 94.
15 W3C. Distributed Object Communication on the Web. W3C Note
11-May-1998. http://www.w3.org/TR/1998/NOTE-webbroker
16 Sutherland, Jeff. Business objects in corporate information
systems. ACM Comput. Surv. 27, 2 (Jun. 1995), pp. 274 - 276.
17 Casanave, Cory. OMG Business Application Architecture White
Paper. OMG bomsig/95-4-1
18 OMG Business Object Domain Task Force. Common Facilities
RFP-4: Common Business Objects and Component Interoperability
Facility. OMG TC Document 95-12-13.
19 Cox, Brad. Object-Oriented Programming: An Evolutionary
Approach. Addison-Wesley, 1986.
20 Taylor, David. Object-Oriented Information Systems: Planning
and Implementation. John Wiley & Sons, 1992, pp. 320-322.
21 META Group, Inc. Making the Case for Use Case. Advanced
Information Management, File 324, 13 February 1995.
22 Love, Tom. Object Lessons : Lessons in Object-Oriented
Development Projects. SIGS Publications, 1993.
23 Sutherland, Jeff and McKenna Jeff. Ensembles. Easel Corporation,
1993. http://www.jeffsutherland.com/papers/ensembles93.html

24 Sutherland JV, Pope M, Rugg K. The Hybrid Object-Relational
Architecture (HORA): An Integration of Object-Oriented and
Relational Technology. Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing, Indianapolis, 14-16 Feb 1993.
Deaton E et al (Eds) ACM Press, pp 326-333.
25 Herzum, Peter and Sims, Oliver. The Business Component
Factory. John Wiley & Sons, 1999 (in press).
26 Szyperski, Clemens. Component Software: Beyond Object-
Oriented Programming. ACM Press, 1998.
27 VMARK Software. Allied Signal Company wins the
Computerworld Object Application Award at Object World. Press
Release, 21 August 1995.
28 Brodie, Michael. The Emporer’s Clothes are Object Oriented and
Distributed. GTE Laboratories, 1997.
29 Microsoft. The Renaissance of Distributed Computing. White
Paper, November 1996 (www.microsoft.com/pdc/html/p&s.htm).
30 Sutherland, Jeff. An Executive Overview to Object Technology
(tutorial). Object World, Boston, Sydney, San Francisco, Frankfurt
and Executive Symposium on Object Technology, Toronto, 1995.
31 Jones, Capers, Programming Languages Table, Release 8.2.
Software Productivity Research, March 1996.
32 Zincke, Gerald. How to Achieve 7.52 Function-Points per Person-
Day with Object Technology. Addendum to Conference
Proceedings, OOPSLA 12thAnnual Conference, 5-9 October, 1997.
ACM Press SIGPLAN.
33 OMG BOMSIG. OMG Business Application Architecture,
Revision 2. OMG 95-04-01.
34 Rational Software, Microsoft, Hewlett-Packard, Oracle, Sterling
Software, MCI Systemhouse, Unisys, ICON Computing, IntelliCorp,
i-Logix , IBM, ObjecTime, Platinum Technology, and Ptech. UML
Proposal to the Object Management Group in response to the
OA&D Task Force’s RFP-1, Version 1.1. OMG Document: 97-08-
11.
35 Cooperative Research Centre for Distributed Systems Technology
(DSTC), IBM, International Computers Limited, Objectivity, Oracle,
System Software Associates, and Unisys. Meta Object Facility
(MOF) Specification Joint Revised Submission. OMG Document:
97-10-2.
36 OMG. CORBA Component Model Request For Proposal. OMG
Document: orbos/96-06-12.
37 IBM Corporation, Netscape Communications Corporation, Oracle
Corporation, Sunsoft, Inc. CORBA Component Imperatives. OMG
Document: orbos/97-05-25.
38 Frankel, David. UML, BOCA, and MOF: Presentation to the
Lifesciences DTF at the Orlando Meeting. OMG Document
lifesci/98-06-02.
39 BOCA CDL Development Kit for OMG IDL, Pre release revision
0.51. Data Access Technologies, Inc., 1998.
40 Frankel, David S.; Seidewitz, Ed; Rutt, Tom (Eds). Roadmap for
the Business Object Initiative: Supporting Enterprise Distributed
Object Computing. OMG Document bom/98-12-04, Version 3.0, 21
December 1998.
41 UML Profile is defined in the Roadmap for the Business Object
Initiative. It is essentially a subset, not necessarily a proper subset, of
UML.
42 Manola, Frank. Towards a Web Object Model. Position Paper for
the OMG-DARPA-MCC Workshop on Compositional Software
Architectures. Object Services and Consulting, Inc., 1998.
43 Manola, Frank (Ed.) X3H7 Object Features Matrix. NCITS X3H7
Technical Committee Document X3H7-93-007v12b, 25 May 1997.
44 W3C. Resource Description Framework (RDF) Model and Syntax
Specification.

