

 Jeff Sutherland 1993

THE HYBRID OBJECT-RELATIONAL

ARCHITECTURE (HORA)

An Integration of Object-Oriented

and Relational Technology

Revised 20 November 1993

Earlier version published as: Sutherland, JV, Rugg, K, Pope, M [1993] The Hybrid Object-Relational
Architecture (HORA): An Integration of Object-Oriented and Relational Technology.. In Proceedings of
the 1993 ACM/SIGAPP Symposium on Applied Computing. : ACM Press, pp 326-333.

Jeff Sutherland
IDX Systems Corporation, Boston, MA

jeff.sutherland@idx.com

Ken Rugg
Object Design, Burlington, MA

Matthew Pope
Object Solutions, Inc., Toronto, Canada

 Jeff Sutherland 1993

ABSTRACT

Many organizations with investments in
relational database management
systems (RDBMS) want to build object-
oriented applications supporting a
graphical user interface without forcing
programmers to deal with SQL and
RDBMS limitations. This paper
proposes a natural and relatively
transparent coupling of object-oriented
clients with relational database server
technology for new applications. The
specified architecture can concurrently
deliver key features of both The Object-
Oriented Database Manifesto1 and the
Third Generation Database System
Manifesto2. The Hybrid Object-
Relational Architecture (HORA) is
designed to:

• support ANSI SQL III object-
oriented functionality using
currently available relational
database systems

• provide good server performance to
both relational and object
applications

• provide full object storage support
by the RDBMS

• allow the specification of high-level
referential integrity rules and user-
specified constraints without SQL
coding.

The HORA approach allows read-only
access from existing relational
applications and is not designed to be

 Jeff Sutherland 1993

updated by legacy systems without
using the object manager.

 Jeff Sutherland 1993

1. INTRODUCTION

The two approaches most often used to
integrate object applications with
relational database management
systems (RDBMS) are:

• Direct connection of an object
application to legacy relational
datastores without modification of
the relational schema.

• Connection of an object application to
an object manager which translates
persistent objects into relational
tables eliminating the need for
embedded SQL in the object
application.

The first approach has been widely used
in recent years and is part of many
vendors language products, class
libraries, and object database systems.
It often requires hardwiring SQL code
in the object client which negatively
impacts flexibility and performance.
Recent detailed data on a production
system of this type for an aerospace
application showed that 35-55% of the
resources used to build an object-
oriented application were wasted on
rework generated by changes to the
relational database schema during the
development phase of the project.3

The second approach has been
implemented in object database
products such as G-BASE/SQL which
allows G-BASE developers to store
objects transparently in an Oracle object
server4 and OpenODB, a layer of object
services provided by Hewlett Packard
and licensed to Informix for distribution

with the Informix RDBMS.5 Both of
these products allow object-oriented
programmers to build new object
applications independent of many of the
limitations of the underlying RDBMS.

In many environments, available
object/relational database products may
not be suitable. For those cases, this
paper describes how to build object
services from the bottom up that will
allow persistent object storage in an
RDBMS for new applications. Since the
object services must manage the schema
of the relational database, legacy
relational applications may read the
objects directly, but may not update the
database without using the object
manager.

The approach presented has been
optimized during repeated
implementations during the period
1989-1992.6,7,8 A similar design is
inherent in the emerging specification of
ISO/ANSI SQL III scheduled for release
in 1996.9 At that time all compliant
relational database systems will become
object-oriented.

The remainder of this paper specifies
the architecture for the Hybrid
Object/Relational Architecture (HORA)
approach. Details of implementation of
objects in relational tables in the
RDBMS are carefully explained.
Functionality that must be supported by
an object manager that uses the tables is
described at a high level. Details of the
Object Manager design are beyond the
scope of this article. An Object SQL and
C++ syntax are used to illustrate a
simple example.

 Jeff Sutherland 1993 2

2. HYBRID OBJECT-

RELATIONAL

ARCHITECTURE

The benefits of HORA are power,
performance, and safety. There are
many published approaches to storing
objects in a relational database.
Rumbaugh10 provides a good overview
of strategies for storing classes in
relational tables. This paper does not
present new theory, but presents new
experience. The power of HORA is that
it is based on over a decade of object
database research and product
implementation11. The performance of
HORA has been optimized due to
repeated implementation in distributed
enterprise environments over many
years. Safety is based on experience
which guarantees that HORA will work
well in commercial environments.

HORA provides the following benefits:

• A rich object Meta-model can be
stored directly in the RDBMS. This
Meta-model information is much
closer to ANSI SQL III object-oriented
capabilities than the limited
constraint definition capability of
ANSI SQL II.

• Distributed client applications can
locally run the object manager that
performs dynamic mapping from
objects to relational tables while
enforcing user-defined integrity
constraints. This allows "atomic"

changes from one valid object state to
another.

• Object applications can be insulated
from RDBMS schema changes
through minor modifications of the
Meta-model.

• These distributed capabilities offload
the RDBMS and improve relational
server performance beyond server
based SQL III implementations.
Performance has been shown to be as
efficient as typical relational
applications because it is constrained
only by the performance of the
underlying relational database.

HORA provides each class with a
relational table. The records in the table
will store object instances. In most
cases, this approach will look like a
normalized database to a relational
application. However, since relational
applications have no notion of object
identity (which is maintained by
HORA), they may not be allowed
bypass the object manager to update the
database.

HORA will not provide the
performance of a pure object database
for complex objects because it will be
constrained by the performance of the
underlying relational database. It is
designed for adding new object
applications to currently available
relational database systems which have
become standard technology in most
organizations.

 Jeff Sutherland 1993 3

APPLICATION

OBJECT SQL

OBJECT
MANAGER

SERVERCLIENT

RDBMS

EMBEDDED SQL

Figure 1

3. HYBRID OBJECT-

RELATIONAL

ARCHITECTURE

In a commercial transaction processing
environment, the client/server
architecture in Figure 1 has been found
useful.7 An object-oriented client
application communicates with the
relational database through an object
access layer using an Object SQL
(OSQL) dialect. The Object Manager
translates OSQL requests into one or
more standard SQL commands to
retrieve objects from the relational
database.

 The OSQL and Object Manager layers
consist of class libraries with store and
retrieve methods. OSQL provides a
clear command structure and can be
easily understood by SQL
programmers. The Object Manager can
provide a direct pass through of ANSI
standard SQL commands12 in order to
provide some support conventional

applications. In this case it must enforce
Codd's Nonsubversion Rule13 for
relational systems by ensuring that
standard relational statements do not
bypass object integrity constraints.

4. OBJECT IDENTITY IN THE

RELATIONAL DATABASE

In order to reduce the work required to
build an object-oriented application and
retain the power of the object
architecture, HORA gives every object a
unique, system defined, object
identifier.14 In a relational system,
objects are not guaranteed unique
identity because they have keys which
may be changed by a user. This creates
a referential integrity problem which
has increased development costs by
over 50% on projects with published
hard data on resource utilization.3

 Jeff Sutherland 1993 4

5. FUNCTIONS OF THE

OBJECT MANAGER

For the purposes of this paper, we
assume the Object Manager will be
written in C++. It will accept OSQL
messages and return C++ objects. The
Object Manager must provide the
following functionality:

• create, update, delete metadata,
classes, and instances

• support OSQL and standard SQL
queries

• enforce metarules

The Object Manager stores metadata in
the database, is semantically complete,
and has a full understanding of
relationships between data. In contrast,
a typical relational database stores only
a portion of the schema in the database.
The ability to maintain and evolve
systems which store a complete set of
metadata is enhanced over conventional
systems. When an original developer
moves on to other work, all the
knowledge about the database does not
depart with the person. Much of it
remains in the database as a Meta-
model, class schema, and metarules
embodied in methods and the
inheritance structure.

6. BUILDING THE HORA
META-MODEL

The HORA Meta-model is created by
building an entity-relationship semantic
database model. The semantic model
can be used to build an object template
supporting methods and inheritance.
Once the object template is in place,
application classes can be created. The
class schema can then be used as a
template to populate the database with
instances. Metaclasses, application
classes, and class instances are all
objects in the database. This recursive
design enables powerful features not
available in persistent object stores built
without a semantic data model
(dynamic schema evolution, for
example).15

The Meta-model has been designed to
be easily extensible to support
distributed servers, versioning, and
triggers. Space limitations make these
topics beyond the scope of this paper.

6.1. The HORA Semantic
Database Model

HORA is based on a semantic database
model. Hull and King16 provide a
thorough review of the historical
development of semantic models along
with an extensive bibliography. All
HORA objects are members of a class
and all classes are constructed only
from atomic attributes and
relationships. This semantic data model
is based on the work of Abrial17 and
directly supports the Entity
Relationship Model of Chen.18

Atomic attributes can consist of any
data type supported by the SQL Server
or any data type which the Object

 Jeff Sutherland 1993 5

Manager can support by using an
algorithm to store data in the RDBMS.
Strategies are available for storing
Binary Large Objects (BLOBS) even in
an RDBMS which does not directly
support them. The term attribute will be
used hereafter to mean atomic attribute.
Each class will have a single table which
stores all attributes.

 HORA links objects through the use of
object identifiers in an Object
Relationship Table (see Figures 2 and 4).
Referential integrity is maintained by
the Object Manager through
enforcement of one simple rule. No
object can be deleted until all its links to
other objects are deleted from the Object
Relationship Table.

6.2 The HORA Object
Template

Reduced Instruction Object Semantics
can be used to construct an object
template by creating the following eight
metadata tables (see Figure 2).

• Class Table

• Attribute Table

• Attribute Type Table

• Class Relationship Table

• Relationship Type Table

• Method Usage Table

• Method Table

• Object Relationship Table

Note that the notion of superclass is
defined as a relationship type in Figure
2. Reuse is supported through this
implementation of multiple inheritance.

6.3. The HORA Metaclass

When the Object Manager receives a
request to open a new database, it open
a database in the RDBMS and constructs
the eight tables shown in Figure 2.
Initially, there are no data in the rows of
these tables. The Class Table is first
populated with eight objects which
represent the eight metatables (objects
1-8). In the Figures, object IDs are
specified so as to aid understanding.

Attribute types are created in the
Attribute Type Table (objects 30-34).
Before the Object Manager can
instantiate the HORA Metaclass, the
"defines type of", "is made of", and "is
superclass of" relationship types are
needed. These are created in the
relationship type table (objects 20, 21,
28).

The HORA Metaclass (the class named
"Class") is made up of attributes and
relationships by creating objects 21 and
22 in the Class Relationship table.
Relationship 20 in the same table
indicates that Attributes Types are
related to Attribute Usage. The Object
Manager must constrain Attribute
Usage names to be unique to avoid
name ambiguity in multiple inheritance
specifications. Attribute Types,
however, may be reused by the Object
Manager.

 Jeff Sutherland 1993 6

The notion of superclasses is added by
defining the Metaclass as a superclass of
itself by adding relationship type 28 to
the Class Relationship Table. The Object
Manager supports standard
specialization inheritance, i.e. subclasses
consist of all attributes, relationships,
and methods of all superclasses plus
one or more additional attributes,
relationships, or methods. Methods are
added by putting relationship type 24,
"is operated on with", in the Class
Relationship Table. Methods for
creating, updating, and deleting
metadata can be added to the methods
table. Polymorphism is supported by
allowing a subclass to respecify a
method previously defined in a
superclass. In order to avoid ambiguity
when searching the network of classes
for methods, a Usage Sequence Number
is defined in the Method Usage Table.
When a message is sent to a class, if the
method is not available in the class, the
search for the method proceeds to
superclasses. If multiple superclasses
have the same method defined, the one
with the lowest Usage Sequence
Number is selected.

Instantiation of the HORA Metaclass
bootstraps the system. The Object
Manager can now dynamically
determine the method of construction
of all classes in the RDBMS by reading
the metatables. With the instantiation of
the appropriate methods, the Object
Manager has the tools to easily change
the Meta-model to support evolving
standards such as those of the Object
Management Group (OMG).19,20,21 For
example, a new Meta-model with
additional features can be created by

making it a subclass of the original
Meta-model.

6.4. HORA Approach to
Methods

From a theoretical standpoint, it is
desirable to store method code in the
database. In practice, distributed clients
running in different languages on
different platforms make this difficult.
Also passing methods over the network
can cause performance problems.

A workable solution is to store method
names and version numbers in the
database. When a client application
connects to the database, it will read the
metadata including method version
information. The client software can
then positively verify that the
appropriate method versions have been
previously linked into client code, prior
to allowing a user to run the
application. Method code under this
scenario resides on application client
workstations and not on the server.

 Jeff Sutherland 1993 7

CLIENT ACCOUNT

SAVINGS
ACCOUNT ACCOUNT

CHECKING

Owns

superclass

Overdraft
Link

Figure 3

7. BANK ACCOUNTS - A

SIMPLE EXAMPLE OF THE

HORA IN ACTION

Consider the object diagram in Figure 3
(Rumbaugh notation).

The example consists of two object
types, Clients and Accounts. Account
will be used as a superclass of Savings
Account and Checking Account. Clients
will own accounts and Checking
Accounts will be related to Savings
Accounts through and Overdraft Link.
This will allow the system to withdraw
money from a Savings Account in the
case of a Checking Account overdraft.
Attributes of these objects are as
specified below:

CLASS Client

(Last_Name, First_Name, Middle_Initial,

SSN-SIN,

RELATIONSHIPS (Owns Account).

CLASS Account

(Account_Number, Opened_Date,

Balance,

METHODS (Open, Close, Deposit,

Withdraw, Transfer).

CLASS Savings_Account

(Interest_Rate,

SUPERCLASSES (Account),

METHODS (Post_Interest).

CLASS Checking Account

(Checking_Fee,

RELATIONSHIPS (Overdraft_Link

Savings_Account),

SUPERCLASSES (Account),

METHODS (Withdraw,

Post_Fee).

 Jeff Sutherland 1993 8

This simple example illustrates the
power of object technology. The class
CHECKING ACCOUNT has a
Withdraw method that overrides the
method of the same name in the
superclass ACCOUNT. This method
may be written to transfer money from
a savings account in the event of
overdraft using the Overdraft_Link
relationship. The Transfer method in
ACCOUNT may use Withdraw (from
itself) and Deposit (to another account).

Consider a transfer from a checking
account to another account. CHECKING
ACCOUNT does not have a Transfer
method, so the Transfer method of
superclass ACCOUNT is executed. This
sends a Withdraw message to the
checking account. If the checking
account has insufficient funds, the
Withdraw method sends a Transfer
message to the attached savings
account, and so forth. A complex series
of events will occur automatically using
only ACCOUNT Withdraw, Deposit,
and Transfer methods and the modified
Withdraw method in CHECKING
ACCOUNT.

Development and maintenance of the
code for these account transactions is
significantly reduced through reuse of
methods and through the built in thread
of execution of these methods
supported by inheritance. In a real
banking system, it will be necessary to
consider security, transaction logs and
other factors. Reduction in code
required will be much greater than in
this simple example.

7.1. Opening A Database

To open a new application database, the
application must send the Object
Manager an OSQL command to create a
database. The Object Manager will
respond by opening a database on the
SQL server and creating the metadata
tables described previously.

Using a proposed OSQL standard
which will eventually be superceded by
ANSI SQL III syntax, the call would
look like as follows with the application
code specifying the database name and
mode of operation (read/write). The
Object Manager returns a cursor and
connection ID for use in the next call to
the database.

Object_Manager::open(cursor, conn_ID, database,

mode);

7.2. Creating The Class Schema

Once the metatables are created, the
application must send OSQL commands
to create the class schema.

Object_Manager::osql(cursor, OSQL_statement,

length, conn_ID);

where,

OSQL_statement=CREATE CLASS Account

(Account_Number integer 12 INDEX

REQUIRED,

Opened_Date date,

Balance money 15.2,

METHODS (Open 1, Close 1, Deposit

1, Withdraw 1, Transfer 1))

 Jeff Sutherland 1993 9

OSQL_statement=CREATE CLASS Client

(Last_Name string 30 INDEX

REQUIRED, First_Name string 30,

Middle_Initial string 1, SSN_SIN integer 9,

RELATIONSHIPS (Owns Account))

OSQL_statement = CREATE CLASS Savings_Account

(Interest_Rate 4.2,

METHODS (Post_Interest 1),

SUPERCLASSES (Account))

OSQL_statement = CREATE CLASS

Checking_Account (Checking_Fee 6.2,

RELATIONSHIPS (Overdraft_Link

Savings_Account),

 METHODS (Post_Fee 1, Withdraw 1),

SUPERCLASSES (Account))

Upon receipt of these commands, the
Object Manager will set up the class
schema in Figure 4 and generate the
object tables of Figure 5 without
instances. All that remains is to instruct
the Object Manager to create the
instances.

7.3. Creating Instances

To enter the first account,

OSQL_statement = CREATE OBJECT OF CLASS

Savings_Account (Account_Number 500258,

Opened_Date 10-10-64, Balance 2200.00,

Interest_Rate 0.06)

A cursor will be returned with
Account_OID, a pointer to the object
just created. This is used to connect a
Client instance to the Savings Account
instance.

OSQL_statement = CREATE OBJECT OF CLASS Client

(Last_Name "Wise", First_Name "Lisa",

Middle_Initial "T", SSN_SIN 111222333,

RELATIONSHIPS (Owns 1000, 1002, 1003))

The creation of the remaining instances
in Figure 5 proceeds in a similar
fashion. Classes and instances can be
modified and deleted with similar
OSQL commands.

8. OPTIMIZING THE

DATABASE FOR

PERFORMANCE

When building a database application
and bringing it into production, it is
sometimes necessary to improve
performance of the system by
denormalizing the database. This
invariably reduces the flexibility of the
system and generates addition
maintenance overhead in a conventional
relational application. In the object-
oriented environment, it can also
destroy the integrity of the object
system.

There is one extension to the object
system which may improve
performance for some applications. For
one to many relationships, a foreign key
OID may be inserted as an attribute in
the instance tables. This will allow
relational joins to be accomplished
without going through the Object
Relationship Table. The Object
Relationship Table must still be
maintained to enable reverse pointers
which support referential integrity. This

 Jeff Sutherland 1993 10

process can be automated through
proper design of the Object Manager.

In our example above, this would result
in an addition column in the Checking
Account table which would contain the
OID's of the related Savings Account.
This would yield performance gains on
transactions that require simultaneous
access to both checking and savings
accounts. For more complex object
hierarchies, improvements could be
significant.

9. CONCLUSION

The HORA methodology for connecting
new object-oriented applications to
relational datastores has been described.
It supports full object-oriented
functionality while allowing traditional
applications read access to the database
and is easily extensible to distributed
RDBMS servers and versioned
databases. The object schema, including
the Meta-model, can dynamically
evolve to support complex object
structures and emerging ISO, ANSI, and
OMG object standards.

 Jeff Sutherland 1993 11

FIGURES

Figure 1 Client Server Architecture

Figure 2 Object Meta-model Schema

Figure 3 Bank Account Entity-Relationship Model

Figure 4 Bank Account Class Schema

Figure 5 Bank Account Instances

12

13

14

15

10. BIBLIOGRAPHY

1Atkinson, M. et al. The Object-Oriented
Database Systems Manifesto. In Deductive and
Object-Oriented Databases. Elsevier Science
Publishers, 1990.

2Committee for Advanced DBMS Function
(Stonebraker, M., et al.). Third Generation
Database System Manifesto. ACM SIGMOD
Record, Sep 1990.

3Gardner, J., Sutherland, J.V. Report on Buyer
Furnished Equipment Development History and
Level of Effort. Object Databases, Cambridge,
Mass., November, 1990.

4G-BASE/SQL Product Brief. Object Databases,
Cambridge, 1990.

5Lyngback, Peter. OSQL: A Language for Object
Databases. Hewlett Packard Technical Report
HPL-DTD-91-4, Jan 15, 1991.

6Sutherland, J.V. Graphael-Boeing Working Paper:
Boeing Aerospace APF Project. Graphael, Inc.,
Waltham, 1989.

7Rymer, J.R. Guiness P.A.'s Buyer Furnished
Equipment: An Object-Oriented Application
Case Study. First Class: The Object Management
Group Newsletter, Nov/Dec 1991, pp. 20-21.

8Rymer, J.R. Object Orientation 1991: Toward
Commercial Reality. Patricia Seybold's Office
Computing Group Special Research Report,
1991, pp. 280-286.

9Melton, Jim. (ISO/ANSI) Working Draft
Database Language SQL (SQL3). ANSI X3H2-
92-155 DBL CNB-003, July 1992.

10Rumbaugh, J. et al. Object Oriented Modeling
and Design. Prentice Hall, Englewood Cliffs,
1991.

11Barthes, John-Paul A., Vayssade, M.,
Znamierovska, M. Property Driven Databases.
In Proceedings of 6th IJCAI, Tokyo. AAAI, 1979.

12Date, C.J. A Guide to the SQL Standard, Second
Edition. Addison-Wesley, Reading, Mass., 1989.

13Codd, E. F. The Relational Model for Database
Management, Version 2. Reading: Addison-
Wesley, 1990.

14Khoshafian, Setrag N., Copeland, George P.
Object Identity. In Readings In Object-Oriented
Database Systems. Zdonik, S.B., Maier, D. (Eds.)
San Mateo, Morgan Kaufmann, 1990.

15Sutherland, J.V. Is a Persistent Object Store a
Database? In OOPSLA '89 Proceedings, New
Orleans, October 1-6. ACM, New York, 1989,
pp. 499--500.

16Hull, Richard, King, Roger. Semantic
Database Modeling: Survey, Applications, and
Research Issues. ACM Computing Surveys
19:3:201-260.

17Abrial, J.R. Data Semantics. In Data Base
Management. Klimbie JW, Koffeman KL (Eds.)
North-Holland, 1974, pp. 1-59.

18Chen, P.P. The Entity-Relationship Model--
Toward a Unified View of Data. In Readings in
Database Systems. Stonebraker, M. (Ed) Morgan
Kaufmann, San Mateo, 1988, pp. 374-387.

19Osher, H.M. Software Without Walls. BYTE
17:3 (Mar), 1992, pp. 122-128.

20Object Model Task Force (OMTF). The OMG
Object Model. Framingham: Object Management
Group (OMG), draft 1 Mar 1992.

21Digital Equipment Corp. et al. The Common
Object Request Broker. Framingham: Object
Management Group (OMG), 1992.

